ユニタリ群

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動先: 案内検索
群論
Rubik's cube.svg


群論

n 次のユニタリ群(ユニタリぐん、: unitary group) U(n) とは、nユニタリ行列のなすのことである。演算行列の積で与えられる。

ユニタリ群は一般線型群部分群である。

定義[編集]

複素数体上のユニタリ群[編集]

ここで GL(n, C) は一般線型群、〈-, -〉はエルミート形式、†はエルミート共役である。

つまりユニタリ群の元は有限次複素線型空間のエルミート形式を―したがってノルムを―保つ。これは「絶対値が 1 の複素数」の線型変換における類似物である[1]

一般の体上のユニタリ群[編集]

ユニタリ群は一般の上では次のように定義される。 基礎体 K の2次拡大体 L をとる。 線型空間 V = Ln 上のエルミート形式

(ここで 代数共役を表す) を不変に保つ V 上の線型自己同型写像のなす群を U(n, K, L) と表し、これをユニタリ群という。

[編集]

4元体F4 = {0, 1, ω, ω2} とする。 ただし演算は関係式 ω2 + ω + 1 = 0 から定める。このとき U(2, F2, F4) は位数18の群で次の2元から生成される。

性質[編集]

複素数体上のユニタリ群は以下の性質を満たす。

関連項目[編集]

脚注[編集]

  1. ^ Finite-Dimensional Vector Spaces (Paul R. Halmos) §59