レーザー兵器

出典: フリー百科事典『ウィキペディア(Wikipedia)』
アメリカの艦載型レーザー兵器 AN/SEQ-3 レーザー兵器システム
アメリカとイスラエルが共同開発している対空レーザー兵器 THEL
アメリカのミサイル迎撃試験用軍用機 AL-1

レーザー兵器英語: Laser weapon[1]は、レーザーを利用した指向性エネルギー兵器の一種。アメリカとイスラエルが共同で開発中の対空レーザー兵器戦術高エネルギーレーザーやアメリカのAN/SEQ-3レーザー兵器システム・ミサイル迎撃試験用軍用機AL-1などがありイスラエルではすでに実戦配備されている。レーザー兵器は日本の高出力レーザシステムなど各国でも研究開発が進んでいる。

概要[編集]

現在の兵器用レーザーは主に照準と測距、銃のターゲッティングに利用されているが、このレーザー光は目標を破壊するものではない。レーザー兵器は通常、短時間に高出力のパルスを生成する。メガジュール級の出力を持つレーザーの一発は、高性能爆薬200gと同様のエネルギーを移送し、同様の基本的な破壊を目標物にもたらす。主要な損傷の働きは、目標表面で生じる爆発的な蒸発と、この反応に起因する機械的な切断である。[要出典]

戦闘時に標的へ直接ダメージを与えたり破壊したりできるレーザー兵器は現在実用化されつつある。アメリカなどではすでに実証実験されており、数km先を高速で飛行する目標物の破壊に成功している。イスラエルの 対空防御システムの一種であるアイアンビームは、2020年8月17日よりすでに実戦配備されている。

レーザービーム兵器の一般的な考え方は、短時間の光パルスで標的を攻撃することである。この種の高出力レーザービームを投射するために必要なパワーには、化学的に動力を持つガス・ダイナミック・レーザー英語版が採用されている。レーザー兵器は高エネルギーレーザーを利用しているため、一瞬で目標物に到達し精度が高いと標的を数秒で破壊することができる。

現在、数km先の戦闘機やヘリコプター・ドローンなどの軍用機、迫撃砲弾ロケット弾などを打ち落とすのには有効だが、秒速数kmで飛来するミサイルへの迎撃や装甲の厚い戦車の破壊には不向き。都市、戦車艦船航空機などへのアクティブ防護システムとして注目され[2]、車載型、艦載型、航空機搭載型がある。

アメリカ海軍は、小型無人航空機携帯対戦車グレネードランチャーモーターボートヘリコプターの可視エンジンなどの標的に対して使用する超短距離(1.0マイル (1.6 km))、30kWのレーザー兵器システム(LaWS)の実験を行っている[3][4]。このシステムは、「6台のレーザー溶接を束ねたもの」と定義されている。2020年時点で60kWのシステム「HELIOS」が駆逐艦クラス向けに開発されている[5]。実験システムの例には、MIRACL戦術高エネルギーレーザーがあるが、これらは現在は製造中止となっている。

原理[編集]

レーザー誘電はまずブルーミング現象を起こし、この後に、良好に形成されたプラズマの、導電イオン化された軌道へと強力な電流を送りこむ。これはいくぶんに類似し、テイザースタンガンの長距離版として機能するが、そのエネルギーは巨大で高出力である。

兵器転用された既存のレーザーの大部分はガスダイナミックレーザーである。燃料または強力なタービンにより、レーザー媒質を流路または一連のオリフィスへと強制通過させる。高圧と熱によってレーザー媒質はプラズマ化し、レーザー光を放出する。このシステムの主な難点は、レーザーを共振させる光共振器の高精度な鏡面と窓を保護し維持することである。大半のシステムではコヒーレントな波を作り出すために低出力のレーザー「発振器」を使用し、これを増幅している。いくつかの試験的なレーザー増幅装置は窓や反射鏡を用いず、開放されたオリフィスを採用しており、これらは高エネルギーにも破壊されない。[要出典]

レーザー兵器のメリット[編集]

実弾兵装と比べた、レーザー兵器の主要な利点を以下に列挙する。

  • レーザー光やマイクロ波は、そのエネルギーが光速で伝播する。このため、地球上での使用であれば目標まで発射とほぼ同時に到達する[6]。したがって、遠距離射撃の移動目標を狙う際も、到達移動距離を補正する必要が無く、また目標側が発射されたレーザーを回避する時間も無い。これらの特性は目標物がミサイルのように高速で移動する場合特に有効である。
  • 砲弾の場合、重力・空気抵抗等の影響を受けるため、考慮すべきパラメータが多くなる。一方、レーザー光の場合、大気による屈折以外の影響をほとんど受けないため、パラメータが少なくて済む(重力による影響は、地球上では無いに等しい)。
  • レーザー光は位相のそろった光なので、干渉性が極めて高く、焦点を小さな一点に集中させることができる。また焦点距離を広い範囲に短時間で変更することができる。
  • 光はエネルギーに対する運動量の比率が極めて小さい(正確には)ことにより、レーザーの生じる反動は無視できる程度のものである。
  • 一発の照射に数百円程度しかかからない。

レーザー兵器の妨げとなる現象[編集]

ブルーミング現象[編集]

レーザー兵器級のレーザー光が大気を通過する時、約1立方cmあたり1メガジュールというエネルギー密度のレーザー光が、大気を温め膨張させる。その結果、大気の密度が小さくなりレーザー光自身を屈折させてしまう。この現象を「ブルーミング現象」と呼び、大気中でのレーザーの集束を乱し焦点の位置をずらしてしまう原因となる。サーマルブルーミング現象を起こさないためには澄んだ空気が必要であるため、レーザー兵器の長距離での使用には限界がある[7]

ビームの吸収・拡散[編集]

空中を通り抜けるレーザー光や粒子ビームは、雨、霧、雪、粉塵、煙、スモッグなどがあると吸収されるか拡散され、ブルーミング現象を増幅させる。目標が見えている限り、雨や雪は大きな障害ではないが、特に雷雲は厳しいとされる[8]。このような気象条件はレーザー兵器の効果を弱めるため、敵が意図的に類似の光学上の障害物である化学物質などを飛散させることが考えられる。

また、このような気象条件ではレーザーのエネルギーにより衝撃波が発生し、雨、霧、雪、粉塵、煙、スモッグなどを押しのけ「トンネル効果」を作り出す。マサチューセッツ工科大学アメリカ陸軍の技術者は、この効果を逆に利用し雲の生成を途絶させ、降雨を制御することを模索している。

ブルーミング現象の発生を抑制する方法[編集]

  • 一旦、鏡を使ってレーザー光を広げ光線のエネルギー密度を低下させた上で大気を通過させ、目標物表面で焦点を合うようにする。これは、大気を通過中のレーザー光がブルーミング現象を起こさない程度にエネルギー密度を低下させるためである。この方法には大型で、非常に精密かつ壊れ難い反射鏡が必要である。また鏡はサーチライトのように据え付けられ、レーザー照準のために回転させるには大型の装置を必要とする。
  • フェーズドアレイレーザーを採用する。通常よく用いられるレーザー光の波長では、マイクロメートル級の発振器が数億個ほど必要とされる。製造方法がまだ開発されていないが、カーボンナノチューブの利用が提案されている。フェーズドアレイ方式は理論的には位相共役波(通常の反射と異なり、反射面の角度にかかわらず光線の入射の方向へ位相が揃った光線を反射する)を起こすことができる。フェーズドアレイ方式では鏡面やレンズを必要とせず、平面を構成でき、ビームを拡散する型式のように照準に際して砲塔形状の兵装システムを必要としない。ビームの射角はフェーズドアレイの平面上で形成され、射界は非常に大きな角度まで許容される[9]
  • 位相共役レーザーシステムを採用する。この兵装システムでは「捜索」もしくは「誘導」レーザーが目標を照射する。目標上にある鏡面に似た働きをする「反射」部分が光を返し、兵装システムの主増幅装置によって探知される。この次に、兵装システムはポジティブ・フィードバックループ(促進的にフィードバックを繰り返す回路)を用い、射入と逆のレーザー波を増幅する。標的は鏡面となっている範囲が蒸発し、その衝撃波によって破壊される。ここでは目標からの反射波がブルーミング現象を通り抜けるため、この現象が回避される。また結果として、光学経路上最良の伝導性が示される。位相共役波の特徴から、ブルーミング現象に起因する歪みは自動的に補正される。試験的な兵装システムがこの方法を用いるとき、通常、「位相共役鏡」を形成するために特別な化学薬品を用いる。大部分の兵装システムでは、兵器として通用する出力レベルにおいて鏡面が劇的に加熱される。
  • 非常に短いパルスを採用する。これはブルーミング現象によってレーザー光が歪められる前に出力を完了する。
  • 単一目標に対し、複数のレーザー群が継続的に低出力で照射する。

目標素材のアブレーションによる減衰[編集]

目標物にレーザー照射すると、表面の素材が蒸発(アブレーション)して影を生み始め、レーザー照射の効果を弱めることがある。この問題について解決のためのいくつかの解決策がある。

  • アブレーションを起こして生じた吸収性のある蒸気に、衝撃波を引き起こすよう誘導する。また衝撃波はまた目標物に損傷を繰り返し与える。
  • 衝撃波が広がるよりも早く目標を走査する。
  • 目標にプラズマと光の入り混じった状態を誘発する。目標から生じるアブレーション雲のレーザーに対する透過性を、もう一つ別のレーザー光で調節する。これはおそらくアブレーション雲がこの別のレーザーのスペクトルを吸収して調整されるもので、また雲の内部に反転分布を誘発する。さらにこのレーザーは、アブレーション雲の中に局部的なレーザー光の放出を引き起こす。光の波長のうなりの結果から、アブレーション雲を貫通する波長が誘発され得る。

エネルギー源と冷却の問題[編集]

レーザー光を発生させるのに必要なエネルギー源として電力を使用するタイプのものは、大きな電力を要求する。エネルギーを蓄え、伝導し、変換して指向するという現状の方法では、簡便で携行可能なレーザー兵器を開発するのは困難である。現状のレーザーは大量のエネルギーを熱として浪費してしまい、加熱による装置の損傷を避けるには、未だに大きな冷却設備を必要とする。空冷式では受容できないほどの射撃間隔の拡大をもたらす。現用のレーザー兵器の実用化を制限するこれらのエネルギー源と冷却の問題は、以下の事項により相殺される可能性がある。

  1. 安価な高温超伝導物質によりエネルギーロスを減少させ兵器をより効率的なものとする。
  2. より簡便な大容量の電力供給・充電装置。レーザー光を発振させて余ったエネルギーの一部は装置の冷却に有効に使用される。

電力をエネルギー源に用いないレーザーとして化学レーザーがある。化学レーザーは化学反応により発生するエネルギーを利用する。過酸化水素ヨウ素を組み合わせる化学酸素ヨウ素レーザー(COIL)と、重水素原子にフッ素を反応させるフッ化水素レーザーは、メガワット級の連続的なレーザー光を出力可能な化学レーザーである。化学レーザーに用いる化学物質の管理にもいくつか問題がある。そのほか冷却及び全体の効率性の悪さの問題がある。

この問題はまた、発電所の近くに兵器を設置するか大きな電力を発生できる大きな艦船か可能ならば原子力水上艦に搭載することで、軽減されうる。艦船には冷却用の水が豊富という長所がある。

間接射撃能力の欠如[編集]

砲撃戦では敵が見えない丘陵の背後にいる目標に対し、砲弾を上から到達させる間接射撃ができるが、直射照準のDEWには実現できない。可能な代替案としては、反射鏡のみを航空機や軌道上のプラットフォームに搭載し、目標を間接的に攻撃することである。

非致死性兵器[編集]

PHASR(Personal halting and stimulation response rifle)は、アメリカ国防総省空軍研究所の指向性エネルギー総局によって開発されたプロトタイプの非致死性レーザー「ダズラー英語版

幾種かのレーザーは非致死性兵器として開発途上にあり、ZM-87ダズラー英語版はそのような兵器の一つである。パルス化されたエネルギー投射体英語版、もしくはPEPシステムは赤外線レーザーを発生する。これは急速に膨張するプラズマを目標に作り出す。その結果、人間を失明させるか幻惑させたり、機器のセンサー狂わせたりするよう設計されている。音、衝撃、そして電磁波は相手を気絶させ、痛みと一時的な麻痺を引き起こすため、暴徒鎮圧の使用も企図している。

多くの種類のレーザーは、目に照射されると一時的または永久的な視力低下を引き起こすため、無力化兵器として使用される可能性がある。レーザー光に目がさらされることによって引き起こされる視力障害の程度、特徴、持続時間は、レーザーの出力、波長、ビームのコリメーション、ビームの正確な方向、および照射時間によって異なる。レーザーの出力は1ワットの数分の一でも、ある条件下では即座に永久的な視力喪失を引き起こす可能性があり、そのようなレーザーは非致死性だが無力化できる武器となり得る。レーザー誘発性失明が表す極度のハンディキャップにより、非致死性兵器としてのレーザーの使用を道徳的に論議するものとなり、永久的な失明を引き起こすように設計された兵器は「レーザー兵器に関する議定書英語版」によって禁止されている。

ダズラー英語版と呼ばれる一時的な失明を引き起こすように設計された武器は、軍や時には法執行機関でも使用され、パイロットが飛行中にレーザーを浴びる事故が発生したため、航空当局がそのような危険性に対処するための特別な手順を導入するようになった[10]

関連項目[編集]

脚注[編集]

  1. ^ Directed Energy”. 2023年2月28日閲覧。
  2. ^ Laser weapons and directed energy”. meta-defense (2023年2月7日). 2023年2月28日閲覧。
  3. ^ Luis Martinez (2013年4月9日). “Navy's New Laser Weapon Blasts Bad Guys From Air, Sea”. ABC. https://news.yahoo.com/navys-laser-weapon-blasts-bad-215808231.html 2023年2月28日閲覧。 
  4. ^ The U.S. Army Plans to Field the Most Powerful Laser Weapon Yet” (2019年8月7日). 2023年2月28日閲覧。
  5. ^ When it comes to missile-killing lasers, the US Navy is ready to burn its ships” (2019年5月28日). 2023年2月28日閲覧。
  6. ^ コラム120 | 海上自衛隊幹部学校”. www.mod.go.jp. 2020年6月30日閲覧。 (インターネットアーカイブ)
  7. ^ Here come the helicopters with weaponized lasers”. Popular Science (2017年6月27日). 2023年2月28日閲覧。
  8. ^ Ross E., Philip (2023). “Economics Drives a Ray-Gun Resurgence”. IEEE Spectrum 60 (1): 41. 
  9. ^ Atomic Rocket: Space War: Weapons
  10. ^ Symonds, Tom (2009年4月8日). “Police fight back on laser threat”. BBC News. http://news.bbc.co.uk/1/hi/technology/7990013.stm 2023年2月28日閲覧。