テンソル・プロセッシング・ユニット

出典: フリー百科事典『ウィキペディア(Wikipedia)』
ナビゲーションに移動 検索に移動

テンソル・プロセッシング・ユニット(Tensor processing unit、TPU)はGoogleが開発した機械学習に特化した特定用途向け集積回路(ASIC)。グラフィック・プロセッシング・ユニット(GPU)と比較して、ワットあたりのIOPSをより高くするために、意図的に計算精度を犠牲に(8ビットの精度[1])した設計となっており、ラスタライズ/テクスチャマッピングのためのハードウェアを欠いている[2] 。チップはGoogleのテンソルフローフレームワーク専用に設計されているがGoogleはまだ他のタイプの機械学習にCPUとGPUを使用している[3] 。他のAIアクセラレータの設計も他のベンダーからも登場しており、組み込みやロボット市場をターゲットとしている。

Googleは同社独自のTPUは囲碁の人間対機械シリーズのAlphaGo対李世ドル戦で使用されたと述べた[2]。GoogleはTPUをGoogleストリートビューのテキスト処理に使っており、5日以内にストリートビューのデータベースの全てのテキストを見つけることができる。Googleフォトでは個々のTPUは1日に1億枚以上の写真を処理できる。TPUはGoogleが検索結果を提供するために使う「RankBrain」においても使用されている[4] 。TPUは2016年のGoogle I/Oで発表されたが、GoogleはTPUは自社のデータセンター内で1年以上前から使用されていると述べた[3][2]

Googleの著名ハードウェアエンジニアのNorm Jouppiによると、TPU ASICはヒートシンクが備え付けられており、データセンターのラック内のハードドライブスロットに収まるとされている[3][5]

アーキテクチャ[編集]

第1世代[編集]

第1世代のTPUは、PCIe 3.0バスを介してホストCPUからのCISC命令で動作する8ビット行列乗算エンジンである。TPUは28 nmプロセスで製造され、正確なダイサイズは不明であるがHaswellの半分未満とされていることから最大で331 mm2である[6]。クロックスピードは700 MHzであり、熱設計電力(消費電力)は28~40Wである。TPUは28 MiBのチップメモリーと65536個の8ビット積和演算器の結果を取る4 MiB32ビットアキュムレーターを有している。命令ではホスト(へ/から)のデータの送信、行列の乗算または畳み込みを実行し、活性化関数に適用される[7]

第2世代[編集]

第2世代のTPUは2017年5月に発表された[8] 。個々のTPU ASICは45テラFLOPSであり、4チップ(1台)で合計180テラFLOPSモジュールとなる。これらのモジュールは256チップ(64台)組み合わせると11.5 PFLOPSのパフォーマンスを発揮する[9]。とりわけ第1世代のTPUは整数に限定されている一方で第2世代のTPUは浮動小数点演算が可能である[10]ので、機械学習モデルの訓練と推論の両方に役立つ。Googleはテンソルフローアプリでの使用のために「Google Computeエンジン」で第2世代のTPUが利用できるようになると述べた[11]

第3世代[編集]

第3世代のTPUは2018年5月に発表された。発表内容は、1ユニットあたりの計算性能が100ペタFLOPSであり、冷却が液体冷却であることのみであった。

関連項目[編集]

参考文献[編集]

  1. ^ Google's Big Chip Unveil For Machine Learning: Tensor Processing Unit With 10x Better Efficiency (Updated)” (2016年5月19日). 2016年6月26日閲覧。
  2. ^ a b c Google supercharges machine learning tasks with TPU custom chip” (英語). Google (2016年5月18日). 2017年1月22日閲覧。
  3. ^ a b c “Google's Tensor Processing Unit explained: this is what the future of computing looks like” (英語). TechRadar. http://www.techradar.com/news/computing-components/processors/google-s-tensor-processing-unit-explained-this-is-what-the-future-of-computing-looks-like-1326915 2017年1月19日閲覧。 
  4. ^ “Google's Tensor Processing Unit could advance Moore's Law 7 years into the future” (英語). PCWorld. http://www.pcworld.com/article/3072256/google-io/googles-tensor-processing-unit-said-to-advance-moores-law-seven-years-into-the-future.html 2017年1月19日閲覧。 
  5. ^ 米Googleが深層学習専用プロセッサ「TPU」公表、「性能はGPUの10倍」と主張 日経コンピュータDigital
  6. ^ GoogleのAI開発を支えるディープラーニング専用プロセッサ「TPU」 - ISCA論文レビュー版から、その仕組みを読み解く マイナビニュース
  7. ^ "In-Datacentre Performance Analysis of a Tensor Processing Unit". 
  8. ^ “Google brings 45 teraflops tensor flow processors to its compute cloud”. Ars Technica. (2017年5月17日). https://arstechnica.com/information-technology/2017/05/google-brings-45-teraflops-tensor-flow-processors-to-its-compute-cloud/ 2017年5月30日閲覧。 
  9. ^ Googleの機械学習マシン「TPU」の第2世代登場、1ボード180TFLOPSで64台グリッドでは11.5PFLOPSに到達 GIGAZINE
  10. ^ Googleが第2世代TPUを発表、処理性能は180TFLOPS EETIMES Japan
  11. ^ “Google Cloud TPU Details Revealed”. Serve The Home. (2017年5月17日). https://www.servethehome.com/google-cloud-tpu-details-revealed/ 2017年5月30日閲覧。