コンテンツにスキップ

「利用者:Tarepan/sandbox」の版間の差分

削除された内容 追加された内容
1,474行目: 1,474行目:
= 卵膜(chorion)の除去 =
= 卵膜(chorion)の除去 =
https://zfin.org/zf_info/zfbook/chapt4/4.1.html
https://zfin.org/zf_info/zfbook/chapt4/4.1.html

若いとうまくいかないとの2011年報告あり<ref>Dechorionation as a tool to improve the fish embryo toxicity test (FET) with the zebrafish (Danio rerio)

https://sci-hub.bz/10.1016/j.cbpc.2010.09.003</ref>


= CRISPR =
= CRISPR =

2017年11月29日 (水) 08:49時点における版

genetically encoded voltage indicator英語版

Thomas S. Otis

論文s

deep learning and EEG

"Deep learning with convolutional neural networks for EEG decoding and visualization" https://doi.org/10.1002/hbm.23730

いろいろなCNNアーキテクチャをEEGに適応して性能を評価。CNNの良さは"end-to-end learning"(特徴抽出英語版までをもCNNに機械学習させること)にある。"imagined"あるいは"executed" 時のEEGデータをデコードするタスクをおこなった。良く使われる"filter bank common spatial patterns"に劣らない成績を収めた。"end-to-end"なのでどんな特徴量をとってくるかはCNN次第だが、解析の結果としてはfrequency bandを利用している傾向がみられたみたい。

cortical features of locomotion-mode transition, EEG

"Cortical Features of Locomotion-Mode Transitions via Non-invasive EEG" [1]

locomotionのmodeが変わるときにEEGがどう変化するか、を調べた論文。独立成分分析とk-means(k平均法)をして、locomotion時に4つ脳領域が関与すると判明。後頭葉のspectral powerが"level-ground"と"stair"で違うことがわかり、この遷移が実際の遷移に1.5秒先立って起きることも検出できた。

RNN

いろいろなタイプ

  • simple RNN (SRN)
  • bidirectional RNN (BRNN)

チロシナーゼ

チロシナーゼは、チロシンをメラニン色素に変換する酵素[4].

ゼブラフィッシュ

tyrosinase (tyr)遺伝子がコードしている[5]。スプライシングバリアントは存在しない[6]。5exonで構成され、mRNAは2048bp, タンパクは534AA[7]。いくつかのパラログがある[8]

参考文献

"Tyrosinase gene expression in zebrafish embryos"

ZFIN, tyr[9]

2Aペプチド

2Aペプチドとはリボソームスキッピングを引き起こすアミノ酸配列のこと。ピコルナウイルス科 口蹄疫ウイルス由来で最初に発見された[10]. 1つの伝令RNAから2つ以上の分離したタンパク質を翻訳 (生物学)させる仕組みとして、遺伝子工学に用いられる。

商用ベクター[11]

T2A (Thosea asigna 2A peptide) 利用例[12]

種類

  • T2A: Thoseaasigna virus
  • P2A: porcine teschovirus-1 (ピコルナウイルス科)
  • E2A: rhinitis A virus (ERAV)
  • F2A: foot-and-mouth disease virus: FMDV (口蹄疫ウイルス)

4種の効率比較 (in HET293T, HT1080, HeLa, zebrafish embryo(mRNA injection), mouse liver(adeno virus))[13]

"Quantitative comparison of gene co-expression in a bicistronic vector harboring IRES or coding sequence of porcine teschovirus 2A peptide"

multi-cistronic vectorで順番が大事か否か "Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector"[14]

IRESとの比較 "Quantitative comparison of gene co-expression in a bicistronic vector harboring IRES or coding sequence of porcine teschovirus 2A peptide"

参考文献

Plasmids 101: Multicistronic Vectors[15]

2A peptide[16]

ぽりしすとろん[17]

石英ガラスセル/キュベット

https://www.jasco.co.jp/jpn/inquiry/faq.html

https://www.gelifesciences.co.jp/technologies/spectro/spectclub/master_01.html

http://www.photosynthesis.jp/proto/bunkou.html

https://www.gelifesciences.co.jp/technologies/spectro/spectclub/master_04.html

Tol2トランスポゾン

Tol2トランスポゾン(transposon, transposable elements[18])とは、メダカのゲノムに内在するトランスポゾンの一種である。

Kawakami (1998)要チェック.

プラスミド

T2KXIG: Xenopus EF1α enhancer/promoter, rbbit b-globin intron, EGFP, SV40 polyA signal. [19]

T2Ksix3.2G: six3.2 promoter, EGFP, SV40 polyA signal.

T2KSAG:

Kwakami (2000):

mini-Tol2[20]: T2KXIGΔin, T2AL200R200G, T2AL200R150Gなど、Tol2の配列を削ったもの

発見と開発の歴史

Koga, et al.. (1995)[21]: Tol1の発見、トランスポゾンとしての可能性示唆

Koga, et al.. (1996)[22]: Tol2の発見

Kawakami, et al.. (1998)[23]: Tol2がautonomousであることの証明. ゼブラフィッシュでのTol2活性の証明

Kawakami & Shima. (1999): Tol2 transposaseの同定と、ゼブラフィッシュでのmRNA injectionによるnon-autonomousな活性の証明

Koga & Hori. (1999)[24]: Tol2は似てる

Kawakami, et al.. (2000)[25]: Tol2のトランスポゾンとしての活性を詳細に評価

Kawakami, et al.. (2004): Gene Trap法とTol2:specific-promoterの実証

Darius, et al.. (2006): minimal Tol2 elementの同定 (miniTol2 [L261R202])

Urasaki, et al.. (2006): minimal Tol2 elementの同定 (L200R150)

飽和突然変異誘発

飽和突然変異誘発 (saturation mutagenesis) とは、遺伝子の突然変異を考えられる全ての組み合わせで誘発することである。

タンパク質工学では「アミノ酸配列の特定部位で全バリアントを作製する」ことになる。タンパク質の機能解析においても有用である。

四肢・鰭の発生

東北大学 田村研究室[26]

keyword spotting

keyword spotting (KWS)とは「事前に設定されたキーワードを発話から検出すること」である[27]

概要

機械に話しかけてスイッチを入れる仕組み、例えば Appleの"Hey Siri"、Googleの"OK Google" や Amazonの"Alexa" はkeyword spotting (KWS)である。

これらの仕組みでは、常に音声入力を見張ってキーワードが出現しないか検証する必要があるため、多くの計算資源を消費する。ゆえにスマートフォンやIoT端末のような処理性能の高くない機器で利用するためには、クラウドでの処理あるいは計算資源を消費しづらい (small-footprintな) 設計をすることが必要である。

手法

KWSには様々な手法が存在する。

  • LVCSSR-based KWS: LVCSR(大語彙連続音声認識)=>テキスト比較
  • Phonetic Search KWS: 連続音素認識でコード=>音素列による比較
  • Acoustic KWS: KWモデル・背景モデル、遷移管理 (非テキスト変換)
  • Deep KWS: NN (非テキスト変換)

ライブラリ・サービス・プラットフォーム

  • KWS特化
    • Snowboy[28]: 音声をアップロードすると学習が行われ、それを利用してKWSをローカルで実行できるライブラリ
      • VADでフィルターしてからKWSの模様 [29]
  • 音声認識一般
    • 音声認識 (Speech to Text) + テキスト検索

重要用語

detection accuracy: 検出精度

false alarm (FA) rate:

small footprint:

関連用語

hotword

wake word/ wakeword detection

論文

title year author content FRR:FA architecture link
Small-footprint keyword spotting using deep neural networks 2014/5 Guoguo Chen 前処理と単純なNNで既存法より出来た [30][31]
Low Resource Keyword Spotting 2014/12 Guoguo Chen 既存法のまとめとpreliminary experiments [32]
Model Shrinking for Embedded Keyword Spotting 2015 Ming Sun 既存法を低リソースで (前処理+SVM) [33]
Online Keyword Spotting with a Character-Level Recurrent Neural Network 2015 Kyuyeon Hwang RNN [34]
Query-by-example keyword spotting using long short-term memory networks 2015 Guoguo Chen LSTM-RNN, ノイズに弱い? [35]
Small-footprint high-performance deep neural network-based speech recognition using split-VQ 2015 Yongqiang Wang すごい低resource!! [36]
A fixed-point neural network for keyword detection on resource constrained hardware 2015 Mohit Shah 低resource細かく解析 [37]
An Early Resource Characterization of Deep Learning on Wearables, Smartphones and Internet-of-Things Devices 2015 Nicholas D. Lane 実機(edisonとか)でのresource消費 [38]
Automatic gain control and multi-style training for robust small-footprint keyword spotting with deep neural networks 2015 Rohit Prabhavalkar オートゲインで良くなったよ [39]
Convolutional neural networks for small-footprint keyword spotting 2015 Tara N. Sainath CNN [40]
An End-to-End Architecture for Keyword Spotting and Voice Activity Detection 2016 Christopher T. Lengerich voice activity detectionを同時にできる? [41]
Investigation of DNN-Based Keyword Spotting in Low Resource Environments 2016 Kaixiang Shen 少ないサンプル数 [42]
Convolutional Recurrent Neural Networks for Small-Footprint Keyword Spotting 2017 Sercan Ömer Arik, Convolutional Recurrent NN PCEN-mel + CRNN [43]

"Convolutional Recurrent Neural Networks for Small-Footprint Keyword Spotting"

data

  • keyword: "TalkType" (can be pronouced as a single word or two words)
  • data set: ~16k different samples, collected from more than 5k speakers
    • training:development:test = 6:1:1

flow

process of single frame

 process :                mel-filterbank                       PCEN
   data  :    raw_data   ================>  mel-spectrogram  ========>  PCEN-mel-spectrogram  =>             CNN               =======> RNN ===> 
dimension:   1 * 24,000                         40 * 151                       40 * 151          Nc:32 filter(20,5) shift(8,2)
 software:                   librosa                                                                      NNabla

sound acquisition

  • frame length: T = 1.5 seconds
  • sampling rate: 16 kHz

frontend

PCEN mel spectrogram

rawData[time-domain] => 40 x 151 (40 channel x {1500 msec/10 ms stride})

mel spectrogram library: https://librosa.github.io/librosa/generated/librosa.feature.melspectrogram.html

NN layer

CNN => RNN => fully-connected => Softmax

RNN: bi-directional RNN LSTM or GRU GRU https://en.m.wikipedia.org/wiki/Gated_recurrent_unit

https://arxiv.org/pdf/1409.1259.pdf

BRNN: https://en.m.wikipedia.org/wiki/Bidirectional_recurrent_neural_networks

http://ieeexplore.ieee.org/document/650093/?tp=&arnumber=650093&url=http:%2F%2Fieeexplore.ieee.org%2Fiel4%2F78%2F14188%2F00650093.pdf%3Farnumber%3D650093

PCEN

PCEN (Per-Channel Energy Normalization) は2016年に提唱された音声認識のfrontend手法[44]。DNN-based acoustic modelingで従来用いられていた"log-mel frontend"の代替として"PCEN frontend"が提唱された[45].

これらの手法では生の音源データを

"log-mel frontend": rawData => FTT => melフィルタバンク => log圧縮

"PCEN": rawData => FFT => melフィルタバンク => AGC(自動利得制御) => log圧縮

log圧縮でダイナミックレンジは小さくなるけど、問題が3つ

  • x = 0 に特異点
  • low level (情報が少ない領域) を引き延ばす => 無駄
  • 音量を考慮とかはできない == 音量が違ったら異なるfeatureが出てくる

静的なlog圧縮を置き換えるのがPCEN。好きなフィルタバンクで分割した後、各々にPCENを適用する形。これがfeed-forward自動利得制御(Automatic Gain Control, AGC)として働くみたい。一次の有限インパルスフィルタをかけたもので、もとのを割ってる。

ケプストラム

メル尺度: 音高の知覚尺度。人が感じる音の高低に基づいた尺度。Hzと知覚音階は正比例しないから、それを補正した感じ?melodyのmel.

とても良い文献 http://abcpedia.acoustics.jp/acoustic_feature_2.pdf

その2 https://www.slideshare.net/tyoshioka/2015-51047277

red: feed-forward AGC, blue: stabilized root compression to further reduce the dynamic range

t:timeIndex, f:frequencyIndex, E(f,t): filterbank Energy, ε: constant to prevent divison by 0

M(t,f): smoothed version of E(t,f)

α: gain normalization strength parameter

s: smoothing coefficient

following AGC, stabilized root compression

δ: offset, r: exponent

if s==0.5 then M(t,f) = 0.5M(t-1,f) + 0.5 E(t,f)

= 0.5(0.5 M(t-2, f) + 0.5 E(t-1,f)) + 0.5 E(t,f)

一般化

if s==s then

M(t,f) = (1-s) M(t-1,f) + s E(t,f)

. = (1-s) {(1-s) M(t-2,f) + s E(t-1,f)} + s E(t,f)

. = (1-s)^2 M(t-2,f) + (1-s)s E(t-1,f) + s E(t,f)

. = (1-s)^k M(t-k, f) + Σ {s * (1-s)^(j-1) * E(t-j, f)}

M(-x, f)が録音前と解釈すればM(-x,f) = 0なので

M(t,f) = Σ {s * (1-s)^(j-1) * E(t-j, f)}

lim k->∞ s * Σ(1-s)^kは1らしい[46]。つまりE(t-k, f)を加重平均(最新が重く古いものが軽い)していることになる。指数移動平均に該当。

miRNA

let-7

> let-7はC.elegansで発見された、最初のmiRNAのひとつ

> http://www.3d-gene.com/case/application/app_007.html

> ヒトでは図1に示すように極めて配列相同性が高い複数のファミリー遺伝子があります1)。

> 1) Science 294 (5543): 853-858. 2001

> http://www.3d-gene.com/case/application/app_007.html

pri-miRNA転写の制御

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3019299/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5215532/

https://academic.oup.com/nar/article/42/7/4640/2435588/Interplay-between-pre-mRNA-splicing-and-microRNA

L型電位依存性カルシウムチャネル

LはLong-lasting-inactivationとLarge-conductance.

> 遅い不活性化 (Long lasting) と大きな (Large) 単一チャネルコンダクタンスを有することから名づけられた

> https://bsd.neuroinf.jp/wiki/電位依存性カルシウムチャネル

> 高電位活性化型のVDCCは、α1、α2δ、βおよびγサブユニットから成るヘテロ4量体を形成すると考えられている

> https://bsd.neuroinf.jp/wiki/電位依存性カルシウムチャネル

a1はCaV1.1, 1.2, 1.3, 1.4がある

Cav1.2が心臓

> Cav1.2は心臓

> https://bsd.neuroinf.jp/wiki/電位依存性カルシウムチャネル

> 大きな細胞外領域を有するα2δサブユニットは、単一の遺伝子にコードされるα2およびδがジスルフィド結合によって結ばれた二量体で、4種類のアイソフォームが知られる (α2δ1-4)。

> https://bsd.neuroinf.jp/wiki/電位依存性カルシウムチャネル

> βサブユニットは、4種類のアイソフォームが知られている (β1-4)。

> https://bsd.neuroinf.jp/wiki/電位依存性カルシウムチャネル

>  Cav1.2遺伝子 (CACNA1C) は、心臓のQT延長や、合指自閉症といった症状を示すTimothy症候群の原因遺伝子である。

> https://bsd.neuroinf.jp/wiki/電位依存性カルシウムチャネル

総説

> https://www.jstage.jst.go.jp/article/fpj/144/5/144_211/_pdf

Cdk5とL-type VDCC

細胞の状態で影響が変わる

> http://onlinelibrary.wiley.com/doi/10.1111/jnc.12746/abstract;jsessionid=09AA700B8FF0A9A900BE8AC24358DFBC.f03t04

https://waseda.pure.elsevier.com/en/publications/cdk5-dependent-regulation-of-glucose-stimulated-insulin-secretion

http://www.sciencedirect.com/science/article/pii/S2213671117302357

> The coIP results demonstrated a binding of CDK5 with CaV1.2 

結局この論文では、最終的なリン酸化ポイントは確定せず.

細胞状況に強く依存することを考慮すると、vitroのassayが役に立ちづらそう

L-type VDCCの制御ポイント

elavl3

ZFIN: https://zfin.org/ZDB-GENE-980526-76

ゼブラフィッシュにおけるヒトHuCホモログの発見と発現解析(1996)[47].

HuC以外のゼブラフィッシュHuホモログ https://zfin.org/ZDB-PUB-000125-9

review

M. N. Hinman & H. Loua. "Diverse molecular functions of Hu proteins". Cell. Mol. Life Sci. 65 (2008) 3168 – 3181 1420-682X/08/203168-14

https://doi.org/10.1007/s00018-008-8252-6

神経発生異常のスクリーニングマーカーとしてin situ hybrydizationに使われてたり (Artinger et al., 1999)

zebrafish HuC promoter engineering

Tomomi Sato, Mikako Takahoko, and Hitoshi Okamoto. "HuC:Kaede, a Useful Tool to Label Neural Morphologiesin Networks In Vivo". genesis.

> we con-structed a transgene HuC:Kaede to induce the expression of Kaede in neurons under the control of a modified version of the zebrafish HuC promoter (Higashijima et al., 2003).

Shin-ichi Higashijima, Mark A. Masino, Gail Mandel, Joseph R. Fetcho. "Imaging Neuronal Activity During Zebrafish Behavior With a Genetically Encoded Calcium Indicator".

Journal of Neurophysiology. 2003.

> For generating stable transgenic lines expressing cameleon in all neurons, a slightly modified version of the zebrafish HuC promoter was used (Park et al. 2000).

HuCプロモーター配列の活性部位を調べた偉大な論文.

Park et al. 2000. "Analysis of Upstream Elements in the HuC Promoter Leads to the Establishment of Transgenic Zebrafish with Fluorescent Neurons" https://doi.org/10.1006/dbio.2000.9898

> We have characterized the promoter of the zebrafish HuC gene by examining the ability of 5′-upstream fragments to drive expression of green fluorescent protein (GFP) in live embryos.

TATAボックスの存在しないプロモーター

> no TATA box is present near the transcription start site

転写開始点の同定

HuC cDNAの5'UTRをprimerとしたprimer extension

> The transcription start site was determined by primer extension using an antisense oligonucleotide derived from the 59-UTR sequence of HuC cDNA (Kim et al., 1996)

intronも大事かもしれない

> For stable expression of GFP in the neurons, a HuC-GFP minigene was constructed containing the 59-flanking region, exon-1, a part of exon-2, and the intervening intron-1 of HuC, and GFP coding sequence. The rationale for this was that intervening sequences have been suggested to increase gene expression in transgenic mice (Brinster et al., 1988) and zebrafish (Amsterdam et al., 1995).

> however, we cannot completely rule out the possibility that intron-1, inserted into the HuC-GFP minigene, might also provide additional elements required to mimic endogenous HuC expression

HuC line

https://zfin.org/ZDB-TGCONSTRCT-090115-4

https://zfin.org/ZDB-TGCONSTRCT-111028-2

https://zfin.org/ZDB-TGCONSTRCT-121024-4

https://zfin.org/ZDB-TGCONSTRCT-130208-4

https://zfin.org/ZDB-TGCONSTRCT-130919-1

https://zfin.org/ZDB-TGCONSTRCT-161116-2

+心筋

https://zfin.org/ZDB-TGCONSTRCT-120104-2

https://zfin.org/ZDB-TGCONSTRCT-120105-1

https://zfin.org/ZDB-TGCONSTRCT-120105-6

KalTA4

https://zfin.org/ZDB-TGCONSTRCT-151029-7

ここまでの参考文献

  1. ^ https://www.researchgate.net/profile/Trieu_Phat_Luu/publication/318743720_Cortical_Features_of_Locomotion-Mode_Transitions_via_Non-invasive_EEG/links/597ad637a6fdcc61bb346234/Cortical-Features-of-Locomotion-Mode-Transitions-via-Non-invasive-EEG.pdf
  2. ^ http://www.cis.twcu.ac.jp/~asakawa/waseda2002/elman.pdf
  3. ^ http://mnemstudio.org/neural-networks-elman.htm
  4. ^ The enzyme tyrosinase is required for the conversion of tyrosine into the pigment melanin. https://doi.org/10.1007/s004270000125
  5. ^ https://zfin.org/ZDB-GENE-991026-3
  6. ^ This gene has 1 transcript https://www.ensembl.org/Danio_rerio/Gene/Sequence?db=core;g=ENSDARG00000039077;r=15:43775890-43794997;t=ENSDART00000122238
  7. ^ https://www.ensembl.org/Danio_rerio/Gene/Sequence?db=core;g=ENSDARG00000039077;r=15:43775890-43794997;t=ENSDART00000122238
  8. ^ https://www.ensembl.org/Danio_rerio/Gene/Compara_Paralog?db=core;g=ENSDARG00000039077;r=15:43775890-43794997;t=ENSDART00000122238
  9. ^ https://zfin.org/ZDB-GENE-991026-3
  10. ^ > a 2A peptide, a “self-cleaving” small peptide first identified by Ryan and colleagues in the foot-and-mouth disease virus (FMDV), a member of the picornavirus http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0018556
  11. ^ http://www.funakoshi.co.jp/contents/4609
  12. ^ http://www.esj.ne.jp/meeting/abst/63/P1-170.html
  13. ^ http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0018556
  14. ^ https://www.nature.com/articles/s41598-017-02460-2
  15. ^ http://blog.addgene.org/plasmids-101-multicistronic-vectors
  16. ^ http://blog.allelebiotech.com/tag/2a-peptide/
  17. ^ http://blog.livedoor.jp/keloinwell/archives/1793206.html
  18. ^ > The DNA-based transposable elements (or transposons) > http://www.pnas.org/content/97/21/11403.long
  19. ^ > in order to make transposon insertions visible, we constructed T2KXIG containing the Xenopus EF1 α enhancer/promoter (Johnson and Krieg, 1994), the rabbit β-globin intron, the EGFP gene, and the SV40 polyA signal (Figure 1A). > http://www.sciencedirect.com/science/article/pii/S1534580704002059?via%3Dihub
  20. ^ > In this study, we demonstrated that 64, 70, and 60% of fish injected with the transposase mRNA and transposon-donor plasmids containing T2KXIGΔin, T2AL200R200G, and T2AL200R150G, respectively, transmitted transposon insertions to their offspring (Table 1). Thus, the germline transmission frequencies using these mini-Tol2 vectors are comparable to, or even higher than, that observed in transgenesis using T2KXIG. http://www.genetics.org/content/174/2/639.long
  21. ^ https://doi.org/10.1007/BF00287101
  22. ^ https://doi.org/10.1038/383030a0
  23. ^ https://doi.org/10.1016/S0378-1119(98)00537-X
  24. ^ https://www.cambridge.org/core/journals/genetics-research/article/homogeneity-in-the-structure-of-the-medaka-fish-transposable-element-tol2/9F1F25A17F30D35588F84B0C7920290C
  25. ^ https://doi.org/10.1073/pnas.97.21.11403
  26. ^ http://www.biology.tohoku.ac.jp/lab-www/tamlab/index.html
  27. ^ > Keyword Spotting is a challenging task aiming at detecting the predefined keywords in utterances. Kaixiang Shen, Meng Cai, Wei-Qiang Zhang, Yao Tian, and Jia Liu. Investigation of DNN-Based Keyword Spotting in Low Resource Environments. International Journal of Future Computer and Communication, Vol. 5, No. 2, April 2016. doi: 10.18178/ijfcc.2016.5.2.458
  28. ^ https://snowboy.kitt.ai/
  29. ^ > Does Snowboy come with VAD? > Yes it does! VAD is Voice Activity Detection which usually detects whether there’s human voice in the audio. It needs much less resources than hotword detection. Thus, Snowboy uses VAD as a filtering layer before hotword detection to reduce CPU usage. http://docs.kitt.ai/snowboy/#does-snowboy-come-with-vad
  30. ^ https://static.googleusercontent.com/media/research.google.com/ja//pubs/archive/42537.pdf
  31. ^ https://www.researchgate.net/publication/269294680_Small-footprint_keyword_spotting_using_deep_neural_networks
  32. ^ https://www.semanticscholar.org/paper/Low-Resource-Keyword-Spotting-Chen-Khudanpur/5e6d618086717f683a2d5d5d1327fa34fefe70d2
  33. ^ https://www.semanticscholar.org/paper/Model-Shrinking-for-Embedded-Keyword-Spotting-Sun-Nagaraja/2980fd9cc4f599bb93e0a5a11f4bab67364a4dde
  34. ^ https://www.semanticscholar.org/paper/Online-Keyword-Spotting-with-a-Character-Level-Rec-Hwang-Lee/498f3f655009f47981a1a48a94720e77f7f2608b
  35. ^ https://www.semanticscholar.org/paper/Query-by-example-keyword-spotting-using-long-short-Chen-Parada/64b34fbb35528daaaf6027c65845313b7a441312
  36. ^ https://www.semanticscholar.org/paper/Small-footprint-high-performance-deep-neural-netwo-Wang-Li/810dd247e051e979486ca6d2adb26f3358dde6fe
  37. ^ https://www.semanticscholar.org/paper/A-fixed-point-neural-network-for-keyword-detection-Shah-Wang/80a08eaab46a975d77e726c4509bc05e22d19743
  38. ^ https://www.semanticscholar.org/paper/An-Early-Resource-Characterization-of-Deep-Learnin-Lane-Bhattacharya/5d6fca1c2dc1bb30b2bfcc131ec6e35a16374df8
  39. ^ https://www.semanticscholar.org/paper/Automatic-gain-control-and-multi-style-training-fo-Prabhavalkar-Alvarez/09927ea57be4c1f036fb2bfc2748133e0c83f5b1
  40. ^ https://www.semanticscholar.org/paper/Convolutional-neural-networks-for-small-footprint-Sainath-Parada/8b801eaee598acb971ce08d43ac270871a40b42b
  41. ^ https://www.semanticscholar.org/paper/An-End-to-End-Architecture-for-Keyword-Spotting-an-Lengerich-Hannun/919b93bb21541cf63b024071b81bd02245f04a33
  42. ^ http://www.ijfcc.org/vol5/458-F031.pdf
  43. ^ https://www.semanticscholar.org/paper/Convolutional-Recurrent-Neural-Networks-for-Small-Arik-Kliegl/11af34fe285ec7a5f5937248bd72cb5768cdc237
  44. ^ Trainable Frontend For Robust and Far-Field Keyword Spotting. 2016 https://arxiv.org/abs/1607.05666
  45. ^ > we introduce the PCEN frontend as an alternative to the log-mel frontend > https://arxiv.org/pdf/1607.05666.pdf?
  46. ^ https://www.wolframalpha.com/input/?i=s*+sum+(1-s)%5Ek,+k%3D0+to+infinity
  47. ^ > In the present study, we have isolated a zebrafish elav/ HuC homologue (zHuC) l, and examined its temporal and spatial expression during early development by wholemount in situ hybridization. >Kim CH1, Ueshima E, Muraoka O, Tanaka H, Yeo SY, Huh TL, Miki N. "Zebrafish elav/HuC homologue as a very early neuronal marker". Neurosci Lett. 1996 Sep 27;216(2):109-12. https://doi.org/10.1016/0304-3940(96)13021-4

Cre line

https://zfin.org/ZDB-TGCONSTRCT-170607-1

脊髄発生

初期運命はforebrainで、シグナルによって後方化が進む.

> The prevalent model from studies in many vertebrates, including zebrafish, is that the most anterior CNS region, forebrain, is the default fate in the embryonic neural plate, and that signals are required to posteriorize the neural plate and thus specify more posterior CNS regions, including the spinal cord.

> http://www.sciencedirect.com/science/article/pii/S0301008203000522?via%3Dihub

シグナルはFGF, Wnt, RA

neuromeres

配列はしているのにセグメント化していない脊髄

> In sharp contrast, the spinal cord remains unsegmented, although an anterior-posterior iterative arrangement of various neuronal populations can be seen to different degrees in Amphioxus, zebrafish and in certain tetrapods

> http://dev.biologists.org/content/develop/134/11/2147.full.pdf

進化的にhindbrainとspinal cordは同じ起源

> have a common evolutionary origin (Ghysen, 2003; Hirth et al., 2003).

  • Cdx1
  • Cdx2
  • Cdx4

> we present evidence that spinal cord specification in zebrafish is dependent on the partially redundant functions of Cdx1a and Cdx4.

> we show that this expanded hindbrain is organized into segmental units arranged in a mirror-image duplicated pattern of ectopic rhombomeres within the trunk region of the embryo.

Cdxの関与

http://dev.biologists.org/content/develop/134/11/2147.full.pdf

RAの関与

http://dev.biologists.org/content/141/22/4375

progenitor domain

特定のタンパク質マーカーによる、神経前駆細胞の領域分け、のこと.

an idealized spinal cord

少なくとも13のdomain, 計23のsub-domainにわけられる[1]. 動物種間で保存度が高い.

動物種

ゼブラでもpdドメインちゃんとある. マウスとほぼ同じdorsalパターン [2] 。神経伝達物質もほぼ同じ [3]

思ったところ

"脊椎動物/vertebrate"だから脊髄発生は強い共通性を持つ.という信念を発生学から感じる.あるいは私の想い.

ポイント: domainであってcellではない。domainはあくまで1つの区分け方.だと私は思う.

articles

S. Gllilnerが書いたreview. 進化に想いを馳せるには良い文献 “Measured Motion: Searching for Simplicity in Spinal Locomotor Networks”

dorsalに注目

"The dorsal spinal cord and hindbrain: From developmental mechanisms to functional circuits"

"A transcription factor network specifying inhibitory versus excitatory neurons in the dorsal spinal cord"

ventralより

"Moving the Shh Source over Time: What Impact on Neural Cell Diversification in the Developing Spinal Cord?"

total review

Nat. Rev. Neurosci. "Decoding the organization of spinal circuits that control locomotion", 10.1038/nrn.2016.9

参考文献

  • 脳科学辞典 脊髄の発生 [4]
  1. ^ Daniel, et al.. Front Mol Neurosci. (2015) "Molecular and cellular development of spinal cord locomotor circuitry" molecularな、progenitor domainのreview
  2. ^ a b Satou, et al.. Development (2013) "Transgenic tools to characterize neuronal properties of discrete populations of zebrafish neurons" pdドメインのTgゼブラを全部作成、凄い仕事 >  In the dorsal spinal cord, however, domain organization is not well understood. We sought to determine the domain organization of the dorsal spinal cord by generating transgenic fish...

脚注

  1. ^ > Within an idealized spinal cord segment, this system establishes thirteen progenitor pools along the dorsal–ventral axis [articles 1]
  2. ^ > Expression patterns of atoh1a, neurog1, gsx2, gsx1, dbx2 and dbx1 are consistent with those of the corresponding genes in mice with only some minor differences.[articles 2]
  3. ^ > Transmitter properties of neurons that derive from dorsal progenitor domains are generally consistent with those in mice[articles 2]
  4. ^ http://bsd.neuroinf.jp/wiki/脊髄の発生

in vitro transcriptionとpoly-A tail

poly-A tailなしmRNAをinjectionしても、原理的にはpoly-A tailが付与されることはない[1].

しかし人工的なpoly-A tail付与をしても、zebrafsih eggへのmRNA injectionではmRNAの寿命に顕著な影響がなかった[2]

ありうる解釈としては、細胞質poly-A tail付加などがあるが、原因は不明[3]

poly-A tailとtermination(転写終結) について[4]

SLiCE法

SLiCE法 (SLiCE cloning) とは、大腸菌 溶解液が持つ内在性の相同組換え活性をin vitroで用いて、制限酵素部位に依存せずPCR(ポリメラーゼ連鎖反応)断片をベクターへクローニングする方法である。いわゆる seamless cloning の一種[5]

概要

大腸菌のもつ内在性 相同組換え活性を利用し、PCR断片をクローニングする手法。

SLiCE (Seamless Ligation Cloning Extract) はHR活性をもった大腸菌 溶解液のことを指しており、SLiCEによるクローニングがSLiCE法 (SLiCE cloning) と呼ばれている模様。

初めて報告されたSLiCE法から改良がくわえられ、通常の研究室で使われる系統 (DH5aなど) から SLiCE が得られるようになっている[6]

改良したラボによると、PCRプライマーの到着から2日でcloningが終了する。

SLiCEとベクター断片を一度調製してしまえば、3ステップ (PCR, 反応液混合15分, トラホメ) でクローニングが可能。

改良の歴史

Triton X-100を使うやり方 [7].

類似の方法

  • In-Fusion® (In-Fusion HD Cloning). Takara(Clontech)
  • GeneArt® Seamless Cloning & Assembly. Thermo Fisher Scientific (Life technologies)
  • Gibson Assembly Master Mix. NEB
  • NEBuilder HiFi DNA Assembly Master Mix. NEB

設計ツール

In-Fusion https://www.takara-bio.co.jp/infusion_primer/infusion_primer_form.php

In-Fusion http://www.clontech.com/US/Products/Cloning_and_Competent_Cells/Cloning_Resources/Online_In-Fusion_Tools

GeneArt https://www.thermofisher.com/order/oligoDesigner/

NEBuilder http://nebuilder.neb.com/

まとめ記事 http://www.biocompare.com/Editorial-Articles/162406-Say-Goodbye-to-Genetic-Scars-with-These-Seamless-Cloning-Kits/

ASAP

ASAPは神経細胞膜電位を可視化する、genetically encoded voltage indicator英語版の一種である。ASAPシリーズの総称。

概要

ASAP (Accelerated Sensor of Action Potentials)[8]genetically encoded voltage indicator英語版の一種である。ASAP1をはじめとする、ASAPシリーズの総称を指す。神経細胞の電気的活動 (膜電位) を光で可視化する、膜電位イメージングに用いられる。スタンフォード大学のMichael Z Linらが主導して開発を進めており、2017年現在で世界最高峰のGEVIシリーズとされる。ニワトリ由来のGgVSDとcpGFPを結合した、VSFP型GEVIである。

特徴

構造

VSDのloop3とloop4の間にcpGFPが挿入されている。VSDはニワトリからとってきた (GgVSD .英語版)[9]。GFPはcpsfGFP-OPT[10]

膜電位感受メカニズム

  • Vm sensing: タンパク質 立体構造変化.
  • reporting: プロトン化による蛍光強度変化

GgVSDが電位変化を感受して立体構造変化を起こす結果、cpGFPも構造が変化する。おそらく、cpGFP蛍光団のプロトネーション状態が変わり、蛍光強度が変化する。脱分極で消光、過分極で強く蛍光する。

二光子励起

二光子励起による膜電位イメージングに成功している、数少ないGEVIである。Ace-mNeonなどのopsin型GEVIは二光子励起すると膜電位感受性を失う場合がある。ASAPは二光子励起による膜電位イメージングがすでに報告されている。

ASAPシリーズ

name year precursor feature HEK culture slice in vivo 二光子励起 利用例
ASAP1[11] 2014 ArcLight英語版 1件[12][13]
ASAP2f[14] 2016 ASAP1[15](A147S ΔA148) Figure S1 Figure S1 - fly 〇 (元論文?) なし[12]
ASAP2s[16] 2017 ASAP1[17](R415Q) improved Vm sensitivity

& slower off-rate[17]

-
ASAP3 unpublished[18] mouse? -

sensitivity

HEK293 hESC-CM cultured neuron slice culture (2-photon)
ASAP1 -23.3[19] -24.0 (hESC)[20], -16.8 (iPSC)[21] -8.6%/AP[22] -8.4%/AP[23]
ASAP2f same as ASAP1[24]
ASAP2s -38.7[19] -45.1 (hESC)[20], -29.1 (iPSC)[21] -12.2%/AP[22] -15.0%/AP[23]
ASAP3b

ASAP2s

ref.25要チェック?

off-rates: Table1. 100 Hz in single trial検出には十分[25]

article story

  • HEK293 1P sensitivity (Fig.1)
  • HEK293 1P & 2P brightness & stability (Fig.1 supp)
  • 1P CM & cultured neuron (Fig.2)
  • 2P in vivo fly (Fig.3)
  • 2P slice culture
    • can detect AP by single-trial (Fig.4)
    • can detect sub-threshold potential by single-trial (Fig.5)
    • detailed ASAP's kinetics (Fig.6)[26]
    • detectability & scan-speed (Fig.7)
    • high frequency detection (Fig.8)[27]
    • single voxel detection (Fig.9)
    • subcellular voltage (Fig.10)
1P spec. of ASAP2s
sample sensitivity single-trial trace
HEK293 -38.7%/100 mV (-70=>+30)[19]
Figure 1—figure supplement 1J
CM -45.1 (hESC)[20]-29.1 (iPSC)[21]
Figure 2B (hESC-CM)
Figure 2—figure supplement 1B (iPSC-CM)
cultured neuron -12.2%/AP[22]
Figure 2—figure supplement 3A
2P spec. of ASAP2s
sample sensitivity single-trial trace
slice culture -15.0%/AP[23]
Figure 4 —figure supplement 2
Figure 9A
Fig.4f
fly

figures

  • 1-photon
    • Figure 1
      • Fig.1: in vitro (HEK293A), 1-photon. sensitivity & spectrum
      • Fig.1 sup.1: other variants.
        • J: response to artificial APs (4-ms FWHM, 100 mV peak, 100Hz 10 AP)
      • Fig.1 sup.2: 1P & 2P brightness ASAP1 vs 2s
      • Fig.1 sup.3: 1P bleaching
      • Fig.1 sup.4: 2P bleaching
      • Fig.2: in vitro (hESC cardiomyocytes & rat culture neurons)
    • Figure 2
      • A-F: hESC cardiomyocites
      • G-K: rat cultured neuron
      • Fig.2 sup.1: hESC-CM. 1P. single-trial response
      • Fig.2 sup.2: membrane localization ASAP1, 2s, Ace2N-2AA, 4AA
      • Fig.2 sup.3: cultured neuron. 1P. single-trial response & bleaching
  • 2-photon
    • in vivo, fly
      • Figure 3
        • Fig.3: in vivo (fly), 2-photon.
        • Fig.3 sup.1: bleaching
        • Fig.3 sup.2: Mac, Ace, jRGECO
        • slice, AOD2P
    • ex vivo, slice culture
      • Figure 4
        • Fig.4: slice culture. AOD2P
          • D: response to current-evoked AP. 925Hz with 20 voxel. 10 trials average trace
          • F: single-trial response to spontaneous APs.
        • Fig.4 sup.1: effect to excitability
        • Fig.4 sup.2: single-trial trace of spontaneous APs
        • Fig.4 sup.3: ASAP1 & 2"f" 10-trial averaged trace
        • Fig.4 sup.4: Ace2N-4AA
      • Fig.5: slice culture. subthreshold depol. & hyperpol. single-trial traces & averaged
      • Figure 6
        • Fig.6: slice culture.
        • B: 10-trial average(gray) & 5-point moving average (color)
        • Fig.6 sup.1: bleaching
        • Fig.6 sup.2: ASAP1 & 2"f"
        • Fig.7: detection & Noise
      • Fig.7 sup.1: ASAP1 & 2"f"
      • Figure 8
        • Fig.8: slice. 10-trial average trace, bleach correction.
        • Fig.8 sup.1: detectability
        • Fig.8 sup.2: ASAP1 & 2"f"
      • Fig.9: slice culture. single-voxel single-trial 50 us dwell time trace
      • Fig.9 sup.1: ASAP1 & 2"f"
      • Fig.10: single cell AP propagation. 31-trial average trace
      • Fig.10 sup.1:

organotypic hippocampal slices:

6-8 day old wistar rats slice. cultured for 7 to 14 days

electroporation and culture for 7days.

局在の重要性

次のやつらは反応しない[28]

  • internal membrane
  • aggregates

zebra

imaging

web of science:

検索項目: トピック: (zebrafish) ANDトピック: (imaging) AND ドキュメントタイプ: (Review) タイムスパン: 2015-2017. 

  • Seeing the whole picture: A comprehensive imaging approach to functional mapping of circuits in behaving zebrafish
  • Live imaging of nervous system development and function using light-sheet microscopy
  • A tale of two species: Neural integration in zebrafish and monkeys
  • Fish-on-a-chip: microfluidics for zebrafish research
  • Chapter 6 - Single neuron morphology in vivo with confined primed conversion
  • Chapter 3 - Second harmonic generation microscopy in zebrafish
  • Defects of the Glycinergic Synapse in Zebrafish
  • A guide to light-sheet fluorescence microscopy for multiscale imaging
  • Zebrafish Behavior: Opportunities and Challenges

みるならCa imaging のarticleを読んだ方がいいかな

Ca2+ imaging

  • Pan-neuronal calcium imaging with cellular resolution in freely swimming zebrafish (2017)
    • ステージとpiezoでfreely moving zebrafishをtrack, 同時にCa2+ imaging
  • Whole-brain functional imaging at cellular resolution using light-sheet microscopy (2013)
    • 体を固定、ライトシートで撮影
  • Fast functional imaging of multiple brain regions in intact zebrafish larvae using Selective Plane Illumination Microscopy (2013)
  • a

in vivo patch clmap:

  • "Whole-cell patch-clamp recordings from identified spinal neurons in the zebrafish embryo"[29]
  • "Paired Patch Clamp Recordings from Motor-neuron and Target Skeletal Muscle in Zebrafish"[30]
    • 断頭して剥がしてる
  • "Patch Clamp Recordings from Embryonic Zebrafish Mauthner Cells"[31]
    • 剥がしてる
  • "Locomotor Pattern in the Adult Zebrafish Spinal Cord In Vitro"[32]
  • "Paired Motor Neuron–Muscle Recordings in Zebrafish Test the Receptor Blockade Model for Shaping Synaptic Current"[33]
  • Rong-wei Zhang & Jiu-lin Du. "In Vivo Whole-cell Patch-Clamp Recording in the Zebrafish Brain". DOI: 10.1007/978-1-4939-3771-4_19.
    • 1% LM-agar. 水吸って、そこにagar添加
    • holding: -60 mV

spinal cord of larvae

  • motor neuron
    • Primary motor neuron (PMNs)
      • RoP: Rostral Primary
      • MiP: Middle Primary
      • CaP: Candaul Primary
      • VaP:
    • Secondary motor neuron
    • spinal accessory motor neuron
    • cranial motor neuron
  • interneuron
    • CoPA
    • CoSA
    • CiD
    • VeLD
    • DoLA
    • CiA
    • CoB
  • Sensory neuron
  • neuroepithelial cells
  • floor plate cells
  • laterally placed cells: 18 cells (18-20 hpf, maybe post-mitotic cells)
  • i

形態

脊髄の中央にはGFAP+の細胞集団(少なくともradial gliaの一部のpolulation)が居座っている.[34]

これらの集団からlateralの位置にHuC+の細胞集団が存在している。GFAP+だった細胞集団から派生してきている奴らもいる[35].

24 hpf ~ 48 hpfだと、縦に10細胞ならぶくらい。横だと6~8くらい? (Fig.1 ~2から類推)[36](電顕データも)[37]

interneuron

形態学的に7つのクラスに分類可能(Bernhardt. 1990[38])。着目点は3つ。軸索のtrajectory, 求心性/遠心性, 細胞体の位置。分類・命名規則は以下の通り。

  • Axonal trajectory
    • commissural / Co
    • circumferential / Ci
    • longitudinal / L
  • 遠心性/求心性
    • ascending / A
    • descending / D
    • bifurcated / B
  • 細胞体の位置
    • dorsal / Do
    • ventral / Ve
  • おまけで
    • primary / P
    • secondary / S

これに従って分類するとlarvaeのinterneuronsは

  • CoPA
  • CoSA
  • CiD
  • VeLD
  • DoLA
  • CiA
  • CoB

ただし、上の分類は蛍光顕微鏡撮影なのでかなりアバウト。confocalを使ってさらに厳密に検証が行われた(Melina E. H. 2001[39])。でもdye injectionなので染まらなかったり局所が見えなかったりが予想されている。

  • Ascending interneurons
    • CoPA
    • CoSA
    • CoLA: new!
  • Descending interneurons
    • CiD
    • MCoD: Muctipolar CoD. VeLDを良くよく調べたら、なんとCoでした
    • UCoD: Unipolar CoD. new!
    • VeMe: Ventral Medial. new!
  • Bifurcating interneurons
    • CoBL: embryonic CoBの成長したやつと予想される

KA cell?[40]

embryonic spinal cord (18 hpf)

total: 18.3 cells/hemisegment (range: 13-25), 18-20 hpf, with DIC optics

c.f. with anti-acetylated_tublin antibody: 4.28 cells/hemisegment, 18 hpf

five-class axogenesis neurons

  • PMNs
  • RB: 1.1 cells/hemisegment with antibody => not yet axogenesis
  • ascending commissural (CoPA? CoSA?)
  • DoLA: rare, dead in larvae?
  • VeLD: 1.1 cells/hemisegment with antibody

later (24-25 hpf)

  • CiD
  • CiA
  • CoB

larvae spinal cord (4 dpf)

PMNs: 1 per 1type

SMNs: up to 20

RB: 1 - 4 (detection by HRP)

interneurons: 7 class

* CoPA: 1 cell/hemisegment

* CoSA: up to 5/hemisegment

* CiD: up to 3/hemisegment

* VeLD: up to 2/hemisegment

遺伝学的

vsx2 (alx, Chx10) ポジの細胞が全部 ipsilatellal descending neuron. それでglutamatergic. ipsilatellal descending neurons のほとんどがvsx2 posだった。[41]

spinal V2aニューロン

spinal cordに存在するChx10陽性ニューロン (hindbrainのとは別)。

CiD (mainがDescendingだけどAscending aborも持ってる) に加えて、Descendingしか持たないうえに変な分岐をしてるやつがいる(dorsally displaced cells)[42]

V2a細胞は脊髄のほぼ全segmentに20 cells/hemisegmentほどで存在する(4-5 dpf)[43]。尾部の尾部にはあまりいない。

CiDとDorsally dispaced cellsで分けると、segment numberによって含有率が大きく異なる。segment 1-5 では60%ほどがCiDだが、segment20あたりではCiDは10%ほど。面白いことにaxonal lengthとsegmentの位置には相関がない。直感的には後ろに行くほど短くなるんだが。

Evdokia et al., 2014はascendingの有無で

  • V2a-B
  • V2a-D

に二分して議論している。

脊髄V2aニューロンのablationによって、hemisegment間の協調がおかしくなることがわかった[44]

運動ニューロン

ゼブラフィッシュの運動ニューロンは、次のサブタイプに分類できる[45][46][47]

  • motor neuron
    • Primary motor neuron (PMNs)
      • RoP: Rostral Primary
      • MiP: Middle Primary
      • CaP: Candaul Primary
      • VaP:
    • Secondary motor neuron
    • spinal accessory motor neuron
    • cranial motor neuron

Primary MNs

10hpfで生まれ[48]、11.5 hpfにOlig2を発現し始める[49](いつ消える?)。PMNsは17~19hpfに軸索を伸長し始める。大人になってもlarvaeと変わらず 1RoP, 1MiP, 1CaP / segment[50]。ちなみにゼブラフィッシュの体節数は30[51]。各サブタイプは投射パターンに追加して、電気生理学的にも差異がみられる[52]。しかし各サブタイプは独立しているのではなく、お互いに影響し合っていると考えられる[53]PMNsに該当する運動ニューロンはヒトで見つかっていない[54]

Secondary MNs

secondary motor neuronsはPMNsから数時間遅れて出現・分岐する運動ニューロンである。16-25 hpfで生まれる[48]。PMNsと比較して小さい。また少数の筋を支配している[55]。NeurolinがPMNとの識別マーカー[56]。Olig2の発現がある模様[57]。(SMNsの数は?)

ヒレを制御する運動ニューロンは通常のPMNとは性質が異なる (Islet1を発現していない)[58]

> Slow fibers are activated during slow sustained swimming, whereas fast fibers only become active during rapid swimming or escape movements 

"Evolution of Patterning Systems and Circuit Elements for Locomotion" [59]

ヒトと異なり、終脳 (大脳) から脊髄への直接投射が存在しない[60]。 c.f. マウスなど

gap junctionの形成が確認されている[61]

MNsの発生

発生に重要な遺伝子はislet1, islet2, olig2[62]などが有名。miR-218が必要との報告[63]もある。

PMNとSMNは違う起源との話もあるようだが、読めてない[64][65]

larvae運動ニューロンの形態と発生文献

author year journal
Myers 1985 Motoneurons of the Larvae Zebrafish J. Comp. Neuro HRP to muscle or root. zebrafish PMNsとSMNsの形態
Myers, et al. 1986 Development and Axonal Outgrowth of Identified Motoneurons in the Zebrafish JNS larvaeでRoP, MiP, CaPの名づけと詳細な解析
Westerfiled, et al. 1986 Identified Motoneurons and Their Innervation of Axial Muscles in the Zebrafish[66] JNS adultでのRoP, MiP, CaP同定 (Myers 1986と同時発表)

MNとOPCの起源

いわゆるpMNドメイン[67]からは運動ニューロンのみならず、オリゴデンドロサイトが生み出される。

当然、運動ニューロン(MNs)とオリゴデンドロサイト(の前駆細胞、OPC)が同一のprogenitor cellから生み出されるのか (common progenitor model)、そうでないのかはみんな気になる。

喧々諤々の論争が続いている模様だが(いや、たぶんね)、かなり有力なlineage-traceの論文[68]が出ていた。非常にきれいな仕事、まさにgeneticsとimagingの融合。この論文では、common progenitor modelではなく、かつ単純にpMNドメインがヘテロなのではなく、pMNドメインへ途中で移動してくる細胞集団がOPCになっていく、というprogenitor recruitment modelなのだと主張している。

介在ニューロン

V0介在ニューロン

  • V0
  • V0d: in
  • V0v: ex
  • further 3 subtype
  • MCoD

interneuron

  • CoPA: Commissural Primary Ascending interneuron

マーカー

  • dbx1
  • dbx2
  • evx1
  • pitx1

https://sites.ualberta.ca/~nikolai/pdf/fraser_pdf.pdf

https://www.ncbi.nlm.nih.gov/m/pubmed/11239430/?i=2&from=/11239429/related

DMRT3

DMRT3 (Doublesex and mab-3 related transcription factor 3)は動物の歩行に関わる遺伝子である。転写因子をコードしている。

馬の歩様に関わることがGWSによって示唆され、マウスによって証明された[69]

発見と命名

DMRT1-3のホモログが存在する。

dI6 INsのsub population

ショウジョウバエのdoublesex (dsx)、線虫のmab-3と近縁?

> Genes related to the Drosophila melanogaster doublesex (dsx) and Caenorhabditis elegans mab-3 genes encode transcription factors conserved during evolution

> http://www.sciencedirect.com/science/article/pii/S0012160607012286

ニューロンでの発現

dI6ニューロンの少なくとも一部のpopulationに発現している。

ゼブラフィッシュでは、DMRT3a positiveニューロンはすべてGlyT positive, vglut2a&gad1b negativeであった[70]

遺伝子改変ゼブラフィッシュの作成

Improved Translation Efficiency of Injected mRNA During Early Embryonic Development http://onlinelibrary.wiley.com/doi/10.1002/dvdy.20995/pdf

http://www.cell.com/current-biology/fulltext/S0960-9822(95)00185-0?_returnURL=http%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0960982295001850%3Fshowall%3Dtrue

zygoteへのエレポは報告されていないはず

50 psi, 30 ms. 2-5 nL (==Φ100 um)[71]

その他

> different gene transfer methods have already been tried on eggs, e.g. gun particle bombardment [6], sperm binding [7] and sperm electroporation [8], but the efficiency of these methods did not reach that of microinjection. [72]

マイクロインジェクション

マイクロインジェクションによる核酸・タンパク質の受精卵導入

(1988) 最初の論文. Stuart. "Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos"[73]

(1991) PATRICIA CULP, et al.. "High-frequency germ-line transmission of plasmid DNA sequences injected into fertilized zebrafish eggs"[74]

エレクトロポレーション

別記事

エレクトロポレーション

sgRNA/Cas9 実績: http://www.nepagene.jp/publications01.html#Zygotes

歴史的論文

(1982) in vitro DNA transfection by electroporation "Gene transfer into mouse lyoma cells by electroporation in high electric fields."[75]

electroporation to zygote

"Nucleic acids delivery methods for genome editing in zygotes and embryos: the old, the new, and the old-new"[76]

CRISPR

2014-10 TAKE "Simple knockout by electroporation of engineered endonucleases into intact rat embryos"[77]

2015-06 "Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing"[78]

2015-11 TAKE "Simple Genome Editing of Rodent Intact Embryos by Electroporation"[79]

2016-05 CRISPR-EZ: Cas9/sgRNA-RNP "Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes"[80]

into intact egg
2014 rat RNA (ZFN, TALEN, Cas9{w/ gRNA}) 3-step. [225V, 1.5msec;50msec]x4;transfer1;2; [81]
2015 mouse & rat RNA (Cas9 mRNA, gRNA, ssODN) [225V, 2.5msec; 50msec]x4;[20V, 50msec;50msec]x5;[-20V, same]x5 [82]

electroporation to zygote of fish

medaka (1990) transgenic animal作成で初めてelepo使ったと主張"Electroporation as a new technique for producing transgenic fish"[83]

zebrafish (1991) 再現性が取れていない (by Muller 1993) "transgenic zebrafish by electroporation"[84]

cannot access (1992) "Electroporation: a method for transferring genes into the gametes of zebrafish (Brachydanio rerio), channel catfish (Ictalurus punctatus), and common carp (Cyprinus carpio)."[85]

zebrafish, catfish and rosy barb (1993) "Efficient transient expression system based on square pulse electroporation and in vivo luciferase assay of fertilized fish eggs."[86]

zebrafish (1998) やたら効率がいい "Construction, electroporatic transfer and expression of ZpβypGH and ZpβrtGH in zebrafish" [87]

egg DNA pulse shape distance F0 analysis F1 analysis w/o dechorionate
1990 medaka innate linear, 100 ug/mL exp (750 V/cm, 50 μs/ 1s, 5 times) 2 mm 4% of hatch 5% of adult-F0 -
1991 zebra innate linear, 100 ug/mL exp (125 V/cm, 7-10msec/1s, 3 times), 0.25 uF 4 mm 65% of alive - -
1993 zebra dechorionated

Pronase E XXV

circular, 50 ug/mL square (100 V/cm, 0.2msec/0.5msec, 16 times) 8.5 mm 20% of alive - 0%
1998 zebra innate? circular, 100 ug/mL exp (70V, ?/1s, 2 times), 25 uF -

electroporation in zebrafish, expect for zygote

  • "Focal Electroporation in Zebrafish Embryos and Larvae". doi: 10.1007/978-1-60327-977-2_10

    微小電極でのエレポでsingle-cell or small-populationに導入.

    必要な道具・手法等を網羅、素晴らしい

  • "Electroporation of DNA, RNA, and morpholinos into zebrafish embryos"[88]
  • "DNA delivery into anterior neural tube of zebrafish embryos by electroporation"[89]
  • "Targeted Electroporation in Embryonic, Larval, and Adult Zebrafish" doi: 10.1007/978-1-4939-3771-4_17
  • "Fast gene transfer into the adult zebrafish brain by herpes simplex virus 1 (HSV-1) and electroporation: methods and optogenetic applications"[90]
  • "Brain asymmetry is encoded at the level of axon terminal morphology"[91]
  • "The Temporal Resolution of In Vivo Electroporation in Zebrafish: A Method for Time-Resolved Loss of Function"[92]
  • http://onlinelibrary.wiley.com/doi/10.1002/dneu.22158/full
  • [93]

electroporation in other species

"Introduction of Foreign Genes into Silkworm Eggs by Electroporation and Its Application in Transgenic Vector Test"[94]

parameters

type target distance voltage duration/repeat Tg success rate from
in Utero plasmid ~10 mm? 30 V [50 ms / 950 ms] x4 - 慶應プロトコル[95]
CRISPR-EZ RNP 1 mm 30 V [3 ms / 100 ms] x2 [80]
mouse zygote mRNA + gRNA (+ ssODN) 1 mm 30 V [3 ms / 97 ms] x7 高そう、けど不明(3/3) [78]
medaka zygote plasmid 2 mm 750 V/cm [50 us / 1 s] x5 2/3109 [83]

卵膜(chorion)の除去

https://zfin.org/zf_info/zfbook/chapt4/4.1.html

若いとうまくいかないとの2011年報告あり[96]

CRISPR

good review: "CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes"[97]

sgRNAが動くと示した論文?[98]

gRNA短くしたらoff-target減ったよ論文 "Improving CRISPR-Cas nuclease specificity using truncated guide RNAs"

single plasmid

(2013) "Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA"[99]

. pX330 == pSpCas9(BB)[100](hCas9 +1x sgRNA), circular, microinjection to pronuclei

. F0: about 50%, Cas9 carrier: 2/46, KO in sperm (germ-line) was seen in F0s

(2013) Nature Methods "Genome engineering using the CRISPR-Cas9 system"[101]

(2014) "Feasibility for a large scale mouse mutagenesis by injecting CRISPR/Cas plasmid into zygotes"[102]

. 2013のGeneration..と同じラボ、ほぼ同じ

(2014) "Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system"[103]

. gatewayでsgRNAカセットをタンデムに繋ぎ、同時KO

(2014) "Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering"[104]

(2015) "Production of knockout mice by DNA microinjection of various CRISPR/Cas9 vectors into freeze-thawed fertilized oocytes"[105]

. 2014のmultiplexとほぼ変わらず

pSpCas9(BB)

SpCas9とsgRNA-backboneがセットになったプラスミド。いくつかの変種がある[106]

pSpCas9(BB)-2A-GFP == CAG:nls-SpCas9-nls-2A-GFP/U6:gRNA_backbone [107]

基本的にこれを使えば間違いないが、zebrafish optimizedとか改良型SpCas9とかは検討必要かも

gRNAはBbs1 restriction enzyme[108]で切って入れる感じ[109]

zebrafish

mRNA or proteinのmicroinjectionが主流. off-targetとheterogeneityが理由.

review

"Zebrafish Genome Engineering Using the CRISPR–Cas9 System"[110]

"Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish"

"Chapter Eighteen - Cas9-Based Genome Editing in Zebrafish"

"Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish"

"Exogenous gene integration mediated by genome editing technologies in zebrafish"[111]

zCas9

的なやつが2つ

"Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system"

"Efficient Gene Targeting in Zebrafish Mediated by a Zebrafish-Codon-Optimized Cas9 and Evaluation of Off-Targeting Effect"

https://www.addgene.org/47929/

history & technology

(2013) 初のzebrafish CRISPR/Cas9. KO (mRNA+gRNA) "Efficient genome editing in zebrafish using a CRISPR-Cas system"[112]

(2013) KO (mRNA+gRNA), lox KI(mRNA+gRNA+ssODN) "Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos"[113]

(2013) homology-indipendent KI "Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair"[114]

. 後追い "Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering"[115]

. 派生版? KI "Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish"[116]

. 力技でexonに影響のない KI "Intron targeting-mediated and endogenous gene integrity-maintaining knockin in zebrafish using the CRISPR/Cas9 system"[117]

(2014) SNP KI (HDR, circular plasmid) "Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system"

(2016) "Precise Editing of the Zebrafish Genome Made Simple and Efficient"[118]

(2017) "CRISPR/Cas9-Mediated Zebrafish Knock-in as a Novel Strategy to Study Midbrain-Hindbrain Boundary Development"[119]

. HITIでfirst-ATGの前にレポーター入れたら元の遺伝子に影響なかったよ。good論文

とりあえず

"Multiple genome modifications by the CRISPR/Cas9 system in zebrafish

"Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish"

"CRISPR/Cas9-mediated conversion of eGFP- into Gal4-transgenic lines in zebrafish"

"Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system"

"Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation."

"Applications of CRISPR-Cas systems in neuroscience"

doi: 10.1016/bs.mcb.2016.04.023 "The zebrafish genome editing toolkit"http://tm3xa4ur3u.search.serialssolutions.com/?url_ver=Z39.88-2004&url_ctx_fmt=info:ofi/fmt:kev:mtx:ctx&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.atitle=The%20zebrafish%20genome%20editing%20toolkit&rft.aufirst=H%2E&rft.aulast=Ata&rft.btitle=ZEBRAFISH%3A%20GENETICS%2C%20GENOMICS%2C%20AND%20TRANSCRIPTOMICS%2C%204TH%20EDITION&rft.date=2016&rft.epage=170&rft.genre=bookitem&rft.isbn=978-0-12-803474-3&rft.issn=0091-679X&rft.pages=149-170&rft.place=SAN%20DIEGO&rft.pub=ELSEVIER%20ACADEMIC%20PRESS%20INC&rft.series=Methods%20in%20Cell%20Biology&rft.spage=149&rft.tpages=22&rft.volume=135&rfr_id=info:sid/www.isinet.com:WoK:WOS&rft.au=Clark%2C%20K%2E%20J%2E&rft.au=Ekker%2C%20S%2E%20C%2E&rft_id=info:pmid/27443924&rft_id=info:doi/10%2E1016%2Fbs%2Emcb%2E2016%2E04%2E023

"CRISPRz: a database of zebrafish validated sgRNAs"

"Efficient identification of CRISPR/Cas9-induced insertions/deletions by direct germline screening in zebrafish."

"Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes"

"Genome editing in zebrafish: a practical overview"

"Zebrafish Genome Engineering Using the CRISPR–Cas9 System"

HDR

"Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage"[120]

HMEJ

"Homology-mediated end joining-based targeted integration using CRISPR/Cas9"[121]

PITCh

"MMEJ-assisted gene knock-in using TALENs and CRISPR-cas9 with the PITCh systems"

"Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9"[122]

HITIの原理関連

"Is Non-Homologous End-Joining Really an Inherently Error-Prone Process?"[123]

HITI…? "In vivo blunt-end cloning through CRISPR/Cas9-facilitated non-homologous end-joining"[124]

使えそう

"Rapid reverse genetic screening using CRISPR in zebrafish"

アイデア

お姉さんの実験をzebrafishでぱぱっと

その他

"A history of genome editing in mammals"

"High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells"

"In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting"[125]

"Chapter 24 - New frontiers for zebrafish management"

"CRISPR Guide RNA Validation In Vitro"

"Genetic targeting and anatomical registration of neuronal populations in the zebrafish brain with a new set of BAC transgenic tools"[126]

KI

2016-01 "ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes"[127]

2017-08 sequential lox introduction[128]

(2016) "In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration"

zebraとかで示されてきたNHEJ-basedなKIをnon-devideing cellに使い、かつ治療PoCとしてin vivo適用したよ。ねじ込み感が凄い...

HDR: homologus recombination

PITCh: MMEJ

HITI: NHEJ-based (homology-independent targeted integration)

ssODN

single-stranded oligodeoxynucleotide

一本鎖オリゴDNA[129]

ゲノム編集での利用

small DNA fragment挿入時のテンプレートとして利用される。dsODNを用いるより効率がいい[130]

IDTで注文可能 http://sg.idtdna.com/jp/site/index.html#Ultramer

2H2OP / two-hit by gRNA and two oligos with a targeting plasmid

recipient genomeをgRNAで切断し、donor plasmidも別のgRNAで切断。plasmid切断部位のssODNおよびplasmid 3`のssODNを添加してHDR-KI

We named this strategy ‘two-hit by gRNA and two oligos with a targeting plasmid’ (2H2OP)

2-hit 2-oligo with plasmid

base edit

Effective gene editing by high-fidelity base editor 2 in mouse zygotes

"Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system"[131]

大脳基底核 - basal ganglia

outputがtonic GABAなので、その有無が何よりも重要ではないかね?

種間比較

大脳基底核は種をまたいで基本構造がほぼ同じ[132]

GPi

primateの淡蒼球内節 (GPi), mammalの脚内核 (entopeduncular nucleus / EP), zebrafishの背側脚内核 (dorsal entopeduncular nucleus, ENd)が相同か。

lamprey

zebrafish

> 終脳の外套下部(subpallium)に位置する終脳腹側部背側核(dorsal nucleus of area ventralis telencephali;以下 Vd とする)

> Vd は哺乳類における線条体の相同機関であると提唱されている(Rink and Wullimann, 2001; Mueller et al., 2008)

> ゼブラフィッシュにおける Vd から脚内核への投射に相当するのが、 哺乳類における線条体から淡蒼球への投射であるのではないかと推測された(図 2- 10B)。

> 本研究で同定された直接経路、間接経路の細胞 群は離れた領域に存在していた。これらの不一致は、進化の過程で発生過程の細胞 種特異的な細胞移動に変化が起こったことを示唆している。この仮説に一致して、硬 骨魚類より早く哺乳類と別れて進化した円口類に属するヤツメウナギでも、直接経路 の神経細胞と間接経路の神経細胞が離れて存在することが明らかになっている (Stephenson-Jones et al., 2011)。

zebrafishは ventralとdorsalに分けられている[133]。終脳の腹側、最外側に位置している (from atlas)。ENdはGAD67positive領域であり、NPY positive細胞が存在している。

"Subdivisions of the Adult Zebrafish Subpallium by Molecular Marker Analysis"[134]

SNr/GPi - PPTg 結合

双方向に結合.

> The SNr sends a prominent GABAergic projection to the PPN that innervates both cholinergic and glutamatergic neurons. [17].

> This nigral output inhibits the activity of cholinergic [40–42] and non-cholinergic [41] neurons of the PPN.

"Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family?"[135]

"Nigral Innervation of Cholinergic and Glutamatergic Cells in the Rat Mesopontine Tegmentum: Light and Electron Microscopic Anterograde Tracing and Immunohistochemical Studies"[136]

PPTgと動物種

黒質網様部 - Substantia Nigra pers reticulata

"Neurons of GPi/SNr" of "The Basal Ganglia Over 500 Million Years"

SNr GABAnergic neuronsが30 Hzでspontaneous firing[137]

spontaneous firingの実体

Andrew Lutas, et al.. (2016) "The leak channel NALCN controls tonic firing and glycolytic sensitivity of substantia nigra pars reticulata neurons"[138]

leak currentはNALCNが大きく担っている。綺麗な仕事。

まとめの本

欲しい "handbook of basal ganglia structure and function, second edition"

https://books.google.co.jp/books?id=vId4CgAAQBAJ&pg=PA1013&lpg=PA1013&dq=handbook+of+basal+ganglia+structure+and+function,+second+edition&source=bl&ots=-Lk845Kj8N&sig=EOyCIeVJu-5fvKRhwVxTNTZTmEU&hl=ja&sa=X&ved=0ahUKEwjG7pi4otvWAhVFS7wKHTNLBi8Q6AEIVDAG#v=onepage&q=neurophysiology%20of%20substantia%20nigra%20dopamine%20neurons&f=false

発生

https://link.springer.com/article/10.1007%2Fs00429-014-0980-9

淡蒼球内節 - GPi / globus pallidus intemus?

GPiのGABAergic neuronはtonic firingしているのか否か

rat EPではしてる。"Electrophysiological characterization of entopeduncular nucleus neurons in anesthetized and freely moving rats" [139]

zebrafish EN

GAD67 mRNA発現[140]

CST

ベッツ細胞

すごい良い https://bsd.neuroinf.jp/wiki/%E4%B8%80%E6%AC%A1%E9%81%8B%E5%8B%95%E9%87%8E#cite_note-ref23-22

DiO/DPA

拡散特性

DiO/DPAの染色条件・方法

original paper:

DiO -> incubation or patch clamp
  • HEK293 cells
    • incubation
      • DiO final 5-10 uM in HEPES-based external solution
      • 2 min
    • patch clamp (cell-attached)
      • patch solution: external solution
      • DiO final 1.8 uM
      • 15 sec ~ 3 min
  • cultured (rat?) hippocampal neurons
    • incubation
      • DiOC16 final 4-10 uM
      • 2 min?
      • 37℃ incubationでlabel増加
    • patch clamp
      • patch solution: normal
      • DiO final 5 ~ 10 uM
  • mouse cerebellar slice
    • patch clamp

DiO stock: 1.8 mM in dimethylformamide

staining: DiOC16 > DiOC18

DPA

DPA stock: 20 mM in DMSO

superfusion ~1 ml/min. within 3min, start staining, become max within 10min.

slice:

>30min preincubation by bath application

GABAAのantagonistとしてDPAが働く…?

Hydrophobic anions potently and uncompetitively antagonize GABAA receptor function in the absence of a conventional binding site

https://doi.org/10.1111/j.1476-5381.2011.01396.x

NMDARのantagonistとしても働くよ、という同じグループの論文。capacitanceなんじゃねぇの…?

Noncompetitive, Voltage-Dependent NMDA Receptor Antagonism by Hydrophobic Anions

10.1124/mol.112.081794

DPA投与hVOS2.0利用文献

全部bath application…あらまぁ…

hVOS2.0開発論文(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3042572/)からの引用web of science 2017-07-08T16:30+09:00

title labeling DOI
hVoS2.0開発論文
Single-trial imaging of spikes and synaptic potentials in single neurons in brain slices with genetically encoded hybrid voltage sensor bath 10.1152/jn.00691.2014
Hybrid voltage sensor imaging of eGFP-F expressing neurons in chicken midbrain slices bath 10.1016/j.jneumeth.2014.05.034
Hybrid voltage sensor imaging of electrical activity from neurons in hippocampal slices from transgenic mice bath 10.1152/jn.00722.2012

DiO/DPAを利用したほかの論文

Web of Science original paperに対する引用検索. review除外で検索. 合計44件 hit 2017-07-07T19:00+09:00

DiO/DPAをVSDとして利用した論文はoriginal paper含め合計7本.

year purpose DiO labeling methods authors doi
2009 original article C16&18

(16>18)

(culture & slice)

DiO:

  • bath
  • patch (cell-attached)

DPA:

  • Jonathan Bradley
  • Ray Luo
  • Thomas S. Otis
  • David A. DiGregorio
10.1523/JNEUROSCI.1240-09.2009
2012 subcomponent, 2PM C16 (all slice)

DiO:

  • patch (whole-cell)
  • iontophoresis

DPA:

45 min pre-incubation + bath

2uM

  • Ann E. Fink
  • Kevin J Bender
  • Laurence O. Trussell
  • Thomas S. Otis
  • David A. DiGregorio
10.1371/journal.pone.0041434
2013 2PM開発.

評価にDiO/DPA

C16 bath
  • Mathieu Ducros
  • Yannick Goulam Houssen
  • Jonathan Bradley
  • Vincent de Sars
  • Serge Charpak
10.1073/pnas.1307818110
2015 高速スキャンFTM法開発

評価にDiO/DPA

C16&18 patch(whole-cell)
  • Matthew Shtrahman
  • Daniel B. Aharoni
  • Nicholas F. Hardy
  • Dean V. Buonomano
  • Katsushi Arisaka
  • Thomas S. Otis
10.1016/j.bpj.2014.12.005
2016 AOD2PMで多点Vm

DiO/DPA

C18 gene-gun
  • Nasrin Shafeghat
  • Morteza Heidarinejad
  • Noboru Murata
  • Hideki Nakamura
  • Takafumi Inoue
10.1016/j.jneumeth.2016.01.023
2016 小脳シナプス統合

DiO/DPAをメイン武器

C16 patch(whole-cell)
  • Alexandra Tran-Van-Minh
  • Therese Abrahamsson
  • Laurence Cathala
  • David A. DiGregorio
10.1016/j.neuron.2016.07.029
2017 patch技術開発

評価にDiO/DPA

C18 special
  • Matthias Garten
  • Lars D. Mosgaard
  • Thomas Bornschlogl
  • Stephane Dieudonne
  • Patricia Bassereau
  • Gilman E. S. Toombes
10.1073/pnas.1609142114

面白そう

Photoacoustic imaging of voltage responses beyond the optical diffusion limit

10.1038/s41598-017-02458-w

GCaMPs

GEVIは英語版wikipediaにお引越し

 GCaMPs

センサー名 発表年 二光子適用 論文 著者 改良点
GCaMP3 2009-11 10.1038/nmeth.1398
GCaMP-HS 2011-03 10.1073/pnas.1000887108 Ohkura, Nakai, et al.
GCaMP5 series 2012-10 10.1523/JNEUROSCI.2601-12.2012 著者だらけ
G-CaMP6 2012-12 10.1371/journal.pone.0051286 Ohkura, Nakai, et al.
G-CaMP7 2012-12 10.1371/journal.pone.0051286 Ohkura, Nakai, et al. G-CaMP6 S205N
G-CaMP8 2012-12 10.1371/journal.pone.0051286 Ohkura, Nakai, et al. G-CaMP7 I47F
GCaMP7a 2013-02 10.1016/j.cub.2012.12.040 Ohkura, Nakai , et al.
GCaMP6s, m, f 2013-07 10.1038/nature12354 Tsai-Wen Chen, Douglas S. Kim

all author

  • Tsai-Wen Chen,
  • Trevor J. Wardill,
  • Yi Sun,
  • Stefan R. Pulver,
  • Sabine L. Renninger,
  • Amy Baohan,
  • Eric R. Schreiter,
  • Rex A. Kerr,
  • Michael B. Orger,
  • Vivek Jayaraman,
  • Loren L. Looger,
  • Karel Svoboda
  • & Douglas S. Kim
mega-screening
Fast-GCaMP6f series 2014-10 10.1117/1.NPh.1.2.025008 Aleksandra Badura ;

 Xiaonan Richard Sun ; 

Andrea Giovannucci ; 

Laura A. Lynch ;

 Samuel S.-H. Wang

very fast kinetics 以後の改良verは出てな

い模様 (web of sci. 引用でチェック)

G-CaMP7.09 2016-10 10.1038/nature19815
GCaMP6fu 2016-12 10.1038/srep38276
  • Nordine Helassa
  • Borbala Podor
  • Alan Fine
  • Katalin Török 
mGCaMP6f RS-1 EF-3 (W43Y, D395A)

> After GCaMP3, improvements in GCaMP have diverged into two paths, one focused on brightness and the other focused on speed.

> http://neurophotonics.spiedigitallibrary.org/article.aspx?articleid=1919022

Ohkura Masamichi

https://scholar.google.co.jp/citations?hl=ja&user=L9S1jdgAAAAJ&view_op=list_works&sortby=pubdate


>  GCaMP5 was engineered from GCaMP3 using a combination of structure-guided design (Akerboom et al., 2009) and semirati

Brain-Machine Interface (BMI)

          
table. BMIの研究例
発表年内容開発者方法備考DoF論文参考資料
1988文字入力L.A. Farwell, et al.脳波(EEG)[1]
1988population codingApostolos P. Georgopoulos, et al.細胞外記録たぶんこれ[2]
1999マウス1D水取りJohn K. Chapin, et al.細胞外記録1[3]
1999脊髄損傷患者による物体把持Richard T. Lauer, et al.脳波(EEG)β波の検知→外部からの筋肉刺激による物体把持[4]
2000サルにおける腕運動の三次元軌跡予測Johan Wessberg, et al.細胞外記録多電極・多領域記録を線形回帰 or ANNでdecoding-[5]
2004コンピュータカーソルの2次元操作Jonathan R Wolpaw, et al.脳波(EEG)[6]
2006コンピュータカーソルの2次元操作Leigh R. Hochberg, et al.細胞外記録[7]
2008見たものを画面上に再現Yoichi Miyawaki, et al.fMRI[8][9][10]
2012ロボット義手の三次元操作および把持操作Leigh R. Hochberg, et al.細胞外記録(SUA)アメリカの"BrainGate"臨床研究4[11][12][13]
2013ドローンの現実空間における操縦Karl LaFleur, et al.脳波(EEG)2[14]
  1. ^ > Initial polyadenylation is part of the mRNA processing in the nucleus (Zhao et al., 1999). Injected mRNA is not processed, http://onlinelibrary.wiley.com/doi/10.1002/dvdy.20995/pdf
  2. ^ > pCS2 lacks such an artificial poly(A) tail, nevertheless mRNA derived from this vector is not degraded in the embryo. The determined half-life was 3.4 hr, which was similar to that for pMC derived mRNA, containing the A30 sequence of pT7TS (3.5 hr). Furthermore, the stability of pCS2 mRNA was in the same range as for mRNA produced from an integrated transgene, where a poly(A) tail is added during processing within the nucleus (3.5 hr; Fig. 3). http://onlinelibrary.wiley.com/doi/10.1002/dvdy.20995/pdf
  3. ^ > One possible explanation for the activity of pCS2-derived mRNA would be cytoplasmic polyadenylation. This process is active in early embryos and is known to be regulated by U-rich sequence elements cooperating with a poly(A) signal (Wormington, 1993; Richter, 1999) http://onlinelibrary.wiley.com/doi/10.1002/dvdy.20995/pdf
  4. ^ http://blog.addgene.org/plasmids-101-terminators-and-polya-signals
  5. ^ > E. coli lysateの持つ内在性homologous recombination活性をin vitroで用いて、制限酵素部位に依存せずPCR断片をベクターへクローニングする方法です(いわゆるseamless cloning)。 > Overview of SLiCE cloning http://www.cc.kyoto-su.ac.jp/~motohas/motohashi_lab/oyakudachi_others_SLiCE.html
  6. ^ http://www.cc.kyoto-su.ac.jp/~motohas/motohashi_lab/oyakudachi_others_SLiCE.html#
  7. ^ > More recently, we found that SLiCE can instead be prepared with buffers containing Triton X-100 [12] http://www.sciencedirect.com/science/article/pii/S2405580815000850
  8. ^ > We named this protein Accelerated Sensor of Action Potentials 1 (ASAP1; Fig. 1a) https://doi.org/10.1038/nn.3709
  9. ^ > We chose a VSD from the chicken Gallus gallus as an initial candidate VSD https://doi.org/10.1038/nn.3709
  10. ^ > and found that the OPT variant of circularly permuted superfolder GFP[26] (cpsfGFP-OPT) improved both brightness and dynamic range while maintaining efficient expression at the membrane. We named this protein Accelerated Sensor of Action Potentials 1 (ASAP1; Fig. 1a). > [26]Cabantous, S., Terwilliger, T.C. & Waldo, G.S. Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat. Biotechnol. 23, 102–107 (2005) https://doi.org/10.1038/nn.3709
  11. ^ https://doi.org/10.1038/nn.3709
  12. ^ a b (2017-07-20 web of science 引用検索 <article絞り込み>、全件確認)
  13. ^ ゼブラフィッシュ失敗例 https://doi.org/10.1080/01677063.2016.1180384
  14. ^ https://doi.org/10.1016/j.cell.2016.05.031
  15. ^ > with mutations in the linker between the third transmembrane segment of the VSD (S3) and GFP (Figures S1 and S2A–S2C; Table S1), we examined the in vivo performance of ASAP1 and one variant, ASAP1 A147S ΔA148 (renamed ASAP2f; Figure 1C). https://doi.org/10.1016/j.cell.2016.05.031
  16. ^ https://doi.org/10.7554/eLife.25690
  17. ^ a b > ASAP1 with an R415Q mutation, which neutralizes one of these sensing charges (Figure 1B) met two of our key design criteria: improved voltage responsiveness in HEK293A cells (Figure 1—figure supplement 1I) and a slower off-rate than ASAP1 (Table 1). We thus designated this more sensitive variant ASAP2s > https://doi.org/10.7554/eLife.25690
  18. ^ >  In recent work, we have developed new variants ASAP2s and ASAP3 with improved responsivity. 第40回神経科学大会 シンポジウム 1S02m-5 http://www.jnss.org/abstract/neuro2017/meeting_planner/sessiondetail.php?st_id=201711876&u=1500556750&yz=0&yzsl=552&yztt=500
  19. ^ a b c > In response to a 1-second 100-mV depolarization from –70 mV in HEK293A cells, ASAP2s exhibited 102 a steady-state fluorescence change of –38.7 ± 1.1%, versus –23.3 ± 1.1% for ASAP1 (mean ± standard error 103 of the mean, p < 0.001, t-test), a 66% improvement (Figure 1C,D).
  20. ^ a b c > the response amplitude of ASAP2s to cardiac potentials was greater 164 than that of the other indicators, reaching –45.1 ± 1.5% compared with –24.0 ± 1.8% for ASAP1 and –32.9 165 ± 1.8% for ArcLight (Figure 2A-D, Video 1) > https://elifesciences.org/articles/25690
  21. ^ a b c > In cardiomyocytes derived from induced pluripotent stem 166 cells, the response amplitude of ASAP2s to action potentials was -29.1 ± 2.1% compared with -16.8 ± 2.2% 167 for ASAP1 and -26.3 ± 2.8% for ArcLight. > https://elifesciences.org/articles/25690
  22. ^ a b c > in neuronal cultures, ASAP2s reported APs with a –12.2 ± 0.5% 188 fluorescence change, compared with –8.6 ± 0.3% for ASAP1, a 42% improvement in response amplitude 189 (Figures 2H,I, Figure 2 – figure supplement 3A) > https://elifesciences.org/articles/25690
  23. ^ a b c > Both ASAPs detected 274 APs, with ASAP2s producing a fluorescence change of –15.0 ± 0.6%, a 79% improvement over the –8.4 ± 275 0.5% response amplitude when using ASAP1 (Figure 4D,E) > https://elifesciences.org/articles/25690
  24. ^ > Under identical conditions, we observed that ASAP2f performed similarly to ASAP1 across all metrics, including brightness (Figure 4—figure supplement 3), AP detection (Figure 4—figure supplement 3), kinetics (Figure 6—figure supplement 2), signal-to-noise ratio (Figure 7—figure supplement 1), and AP trains detection (Figure 8—figure supplement 2). > https://elifesciences.org/articles/25690
  25. ^ > while being still sufficiently rapid to track fast trains of AP waveforms at 100 Hz in single trials (Figure 112 1—figure supplement 1J,K).
  26. ^ > We characterized the kinetics of the ASAP indicators in our system by oversampling at 3700 Hz 290 (Figure 6A-E). > https://elifesciences.org/articles/25690
  27. ^ > When active, most neurons fire APs repetitively. Therefore, we next tested whether the ASAP indicators could report high-frequency trains of APs. > https://elifesciences.org/articles/25690
  28. ^ > Proper plasma membrane localization is crucial for detecting voltage events, as 173 GEVIs trapped in internal membrane structures or aggregates do not respond to neuronal activity but can be brightly fluorescent45 https://doi.org/10.7554/eLife.25690
  29. ^ https://www.ncbi.nlm.nih.gov/pubmed/14739588
  30. ^ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3143584/
  31. ^ https://www.jove.com/video/50551/patch-clamp-recordings-from-embryonic-zebrafish-mauthner-cells
  32. ^ http://jn.physiology.org/content/99/1/37
  33. ^ http://www.jneurosci.org/content/25/35/8104.short
  34. ^ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646814/
  35. ^ Fig.2 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646814/
  36. ^ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646814/
  37. ^ http://onlinelibrary.wiley.com/doi/10.1002/cne.903020316/epdf
  38. ^ https://doi.org/10.1002/cne.903020315 Bernhardt RR, Chitnis AB, Lindamer L, Kuwada JY. Identification of spinal neurons in the embryonic and larval zebrafish. J Comp Neurol. 1990;302(3):603-16.
  39. ^ https://doi.org/10.1002/cne.1266
  40. ^ >  They do resemble Kolmer-Agduhr (KA) interneurons (Dale et al., 1987; Bernhardt et al., 1992) in their ventromedial positions in spinal cord; however, they differ in significant ways from KA cells.  http://onlinelibrary.wiley.com/doi/10.1002/cne.1266/full
  41. ^ https://doi.org/10.1523/JNEUROSCI.4993-05.2006
  42. ^ > There are also V2a cells that have an exclusively descending axon with extensive proximal collaterals, called dorsally displaced cells (Kimura et al., 2006; McLean et al., 2008). > http://onlinelibrary.wiley.com/doi/10.1002/cne.23465/full
  43. ^ Tg[chx10:GFP] (Kimura et al., 2006)を使ってカウント。 1回でもchx10ポジになればどんな細胞でもGFPポジになることに(たぶん)注意。 > Because the number of V2a cells in spinal cord is unknown, we first took advantage of the Tg[chx10:GFP] fish (formerly known as Tg[alx:GFP]; Kimura et al., 2006) to estimate the number of V2a cells per spinal segment. Along the length of spinal cord, there were about 20 cells per hemisegment (Fig. 1B).  > http://onlinelibrary.wiley.com/doi/10.1002/cne.23465/full
  44. ^ http://www.pnas.org/content/109/14/5511.full
  45. ^ https://zfin.org/action/ontology/term-detail/ZFA:0009052
  46. ^ http://www.jneurosci.org/content/6/8/2278.long RoP, MiP, CaPを命名した論文
  47. ^ http://www.jneurosci.org/content/6/8/2267.long adultのRoP, MiP, CaP
  48. ^ a b > primary motoneurons (PMNs), which begin to be born about 10 hpf, and secondary motoneurons (SMNs), which are born between about 16 and 25 hpf (Myers et al., 1986).  > http://dev.biologists.org/content/131/23/5959
  49. ^ > In earlier work, we have shown that newly born PMNs express olig2 at 11.5 hpf (Park et al., 2002). > http://dev.biologists.org/content/131/23/5959
  50. ^ "These 3 adult primary motoneurons corresponded in positions and morphologies to the primary motoneurons we have also found in embryonic (Eisen et al., 1986) and larval (Myers et al., 1985) zebrafish." http://www.jneurosci.org/content/6/8/2267.long
  51. ^ http://www.ucl.ac.uk/zebrafish-group/publications/stickney2000c.pdf
  52. ^ http://jn.physiology.org/content/102/4/2477
  53. ^ https://www.ncbi.nlm.nih.gov/pubmed/23302694
  54. ^ http://www.sciencedirect.com/science/article/pii/S0301008214000410#sec0010
  55. ^ https://zfin.org/action/ontology/term-detail/ZFA:0009247
  56. ^ > o help discriminate between PMN and SMN populations, we also labeled transgenic embryos with anti-Neurolin antibody, which reveals SMNs but not PMNs (Fashena and Westerfield, 1999). > http://dev.biologists.org/content/131/23/5959
  57. ^ >  Doubly labeled cells were evident in transverse sections of 36 hpf embryos (Fig. 1B), showing that olig2:EGFP+cells give rise to SMNs. > http://dev.biologists.org/content/131/23/5959
  58. ^ islet 1 is not expressed in the zebrafish pectoral fin MNs" http://www.sciencedirect.com/science/article/pii/S0301008214000410#sec0010
  59. ^ https://med.nyu.edu/dasenlab/assets/publications/JungReview.pdf
  60. ^ "an important difference between teleost fish species and mammals is that there are no direct telencephalic projections to the spinal cord. " http://www.sciencedirect.com/science/article/pii/S0301008214000410#sec0010
  61. ^ https://www.nature.com/nature/journal/v529/n7586/full/nature16497.html
  62. ^ ゼブラフィッシュolig2の同定 (zゲノム解析前)とその重要性 https://doi.org/10.1006/dbio.2002.0738
  63. ^ https://doi.org/10.1038/ncomms8718
  64. ^ ここで"secondary"のサーチかけて後ろの文献探した https://doi.org/10.1002/dvdy.21620
  65. ^ http://dev.biologists.org/content/131/23/5959
  66. ^ http://www.jneurosci.org/content/6/8/2267
  67. ^ https://bsd.neuroinf.jp/wiki/%E8%84%8A%E9%AB%84%E3%81%AE%E7%99%BA%E7%94%9F#.E3.83.8B.E3.83.A5.E3.83.BC.E3.83.AD.E3.83.B3.E3.81.AE.E7.99.BA.E7.94.9F
  68. ^ http://genesdev.cshlp.org/content/29/23/2504.long
  69. ^ https://www.nature.com/nature/journal/v488/n7413/full/nature11399.html
  70. ^ > We then examined the neurotransmitter properties of dmrt3a-positive neurons using Tg[dmrt3a:Gal4] and Tg[UAS:GFP]. As shown in Fig. 3J-L, all of the GFP-labeled neurons were positive for glyt2:RFP (Fig. 3K, arrowhead), and none of them was positive for vglut2a:RFP or gad1b:RFP, indicating that dmrt3a marks glycinergic dI6 neurons.  > http://dev.biologists.org/content/140/18/3927.long
  71. ^ > Inject about 2–5 nL DNA or RNA. > https://link.springer.com/protocol/10.1385%2F1-59259-270-8%3A487
  72. ^ https://www.ncbi.nlm.nih.gov/pubmed/8504855
  73. ^ http://dev.biologists.org/content/103/2/403.long
  74. ^ http://www.pnas.org/content/88/18/7953.abstract
  75. ^ https://www.ncbi.nlm.nih.gov/pubmed/6329708
  76. ^ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4815204/
  77. ^ https://www.nature.com/articles/srep06382
  78. ^ a b https://www.nature.com/articles/srep11315
  79. ^ http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0142755#pone.0142755.s002
  80. ^ a b http://www.jbc.org/content/291/28/14457.long
  81. ^ > Here, we established a method to produce knockout rats by introducing ZFN, TALEN, and CRISPR/Cas mRNA into intact embryos using electroporation.https://www.nature.com/articles/srep06382
  82. ^ http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0142755#pone.0142755.s002
  83. ^ a b https://ac.els-cdn.com/092233719090030Z/1-s2.0-092233719090030Z-main.pdf?_tid=31fa010c-a812-11e7-aab2-00000aacb35f&acdnat=1507018356_883342ada770b700db2f6c5d54daebfe
  84. ^ http://www.bio-rad.com/LifeScience/pdf/Bulletin_1354.pdf
  85. ^ https://www.ncbi.nlm.nih.gov/pubmed/1339228
  86. ^ https://www.ncbi.nlm.nih.gov/pubmed/8504855
  87. ^ https://link.springer.com/article/10.1007/BF02709167
  88. ^ http://www.sciencedirect.com/science/article/pii/S1046202306000612?via%3Dihub
  89. ^ https://www.biotechniques.com/multimedia/archive/00010/03355st02_10126a.pdf
  90. ^ http://images.biomedsearch.com/24834028/fncir-08-00041.pdf?AWSAccessKeyId=AKIAIBOKHYOLP4MBMRGQ&Expires=1507161600&Signature=xGZS1Qqf7jzdqON17n2o7yiUH%2Fg%3D
  91. ^ https://neuraldevelopment.biomedcentral.com/articles/10.1186/1749-8104-3-9
  92. ^ https://www.ncbi.nlm.nih.gov/pubmed/20192851
  93. ^ https://www.ncbi.nlm.nih.gov/pubmed/21248702
  94. ^ https://watermark.silverchair.com/api/watermark?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAeQwggHgBgkqhkiG9w0BBwagggHRMIIBzQIBADCCAcYGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMOYx_0NUxE8ngm12OAgEQgIIBlw3P5k0FFLZHAgx7LXlrXw7CYgjWninzH9r5Qe0MST5tgla2qVFBm3WqZmsaUyBMIgxChw4JnU8i_HGNuj6vNsPGwtuIKf_IazHVzz3HviWlVt4ZslMtfgYcYOCLiXr1U1d3zmTLtuWEgWd2x16L2p738QDWpKivi7GPmy9sLu3C5oH55saF1c8EKBG15hBJ4M2buhZBoZyWNVBFdjuQVf4achf6tw6wyqexKvn37jNzRtt0KCmcedwCusvbxGfc1FFXHsH5IneB-_RKaKdNOq-IKV1qpknjoVYK5BOvqMZJxijyihTdOsk4UvoeO3h1G-0r1DNOySNZP1Vi2hryzc4VFnUt2MRXvlPFJi73hykREyKt_5jWl7IbWhVHyhGO99eyBEuhVUPTcYRz3_53XVKHzttbKXEUyZWkkywIMtpwWzEnQ7NPk4DzMlVFwAGkcIcF4dBgxt6n9pQJf-cFdH2_JFDcbkGFtPXH3aCvoR1NI2wLGBCnQFJgVFG4PHqEIK9fMZn6GjlZY7yORHWmjfHQo1_sZRoo
  95. ^ http://onlinelibrary.wiley.com/doi/10.1111/j.1440-169X.2008.01043.x/full
  96. ^ Dechorionation as a tool to improve the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) https://sci-hub.bz/10.1016/j.cbpc.2010.09.003
  97. ^ http://www.cell.com/cell/fulltext/S0092-8674(16)31465-9
  98. ^ http://science.sciencemag.org/content/337/6096/816.long
  99. ^ https://www.nature.com/articles/srep03355
  100. ^ pSpCas9(BB) (formerly pX330; Addgene plasmid ID: 42230)https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969860/
  101. ^ https://www.ncbi.nlm.nih.gov/pubmed/24157548
  102. ^ http://onlinelibrary.wiley.com/doi/10.1111/dgd.12113/abstract
  103. ^ https://www.nature.com/articles/srep05400
  104. ^ https://www.nature.com/articles/srep04513
  105. ^ https://bmcbiotechnol.biomedcentral.com/articles/10.1186/s12896-015-0144-x
  106. ^ https://www.addgene.org/42230/
  107. ^ https://www.addgene.org/48138/
  108. ^ https://www.thermofisher.com/order/catalog/product/ER1011
  109. ^ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969860/
  110. ^ http://www.sciencedirect.com/science/article/pii/S0168952516301378
  111. ^ http://www.tandfonline.com/doi/abs/10.1080/21655979.2017.1300727?journalCode=kbie20
  112. ^ https://www.nature.com/nbt/journal/v31/n3/full/nbt.2501.html
  113. ^ http://www.nature.com/cr/journal/v23/n4/full/cr201345a.html
  114. ^ http://genome.cshlp.org/content/24/1/142.full
  115. ^ http://www.nature.com.ez.wul.waseda.ac.jp/articles/srep06545
  116. ^ http://www.nature.com.ez.wul.waseda.ac.jp/articles/srep08841
  117. ^ http://www.nature.com/cr/journal/v25/n5/full/cr201543a.html
  118. ^ http://www.sciencedirect.com/science/article/pii/S1534580716300703
  119. ^ https://www.frontiersin.org/articles/10.3389/fnana.2017.00052/full
  120. ^ https://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1164-8
  121. ^ https://www.nature.com/cr/journal/v27/n6/full/cr201776a.html
  122. ^ https://www.nature.com/articles/ncomms6560
  123. ^ http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1004086
  124. ^ https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkv1542
  125. ^ https://www.nature.com/articles/s41467-017-00687-1
  126. ^ https://www.nature.com/articles/s41598-017-04657-x
  127. ^ https://www.nature.com/articles/ncomms10431
  128. ^ http://www.nature.com.ez.wul.waseda.ac.jp/articles/s41598-017-08496-8
  129. ^ > 一本鎖オリゴDNA(ssODN) http://catalog.takara-bio.co.jp/com/tech_info_detail.php?mode=3&masterid=M100007314&unitid=U100007790
  130. ^ > more efficient than using double-stranded donor plasmids https://www.nature.com/articles/ncomms10431
  131. ^ https://www.nature.com/articles/s41467-017-00175-6
  132. ^ > As mentioned above, most basal ganglia key features were thought to have evolved within the amniote classes [34,36,101]. However, since the lamprey, the earliest anamniote, has the basal ganglia developed in exquisite detail, this longstanding assumption is incorrect. > http://tm3xa4ur3u.search.serialssolutions.com/?url_ver=Z39.88-2004&url_ctx_fmt=info:ofi/fmt:kev:mtx:ctx&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=The%20Basal%20Ganglia%20Over%20500%20Million%20Years&rft.aufirst=Sten&rft.aulast=Grillner&rft.date=2016&rft.eissn=1879-0445&rft.epage=R1100&rft.genre=article&rft.issn=0960-9822&rft.issue=20&rft.jtitle=CURRENT%20BIOLOGY&rft.pages=R1088-R1100&rft.spage=R1088&rft.stitle=CURR%20BIOL&rft.volume=26&rfr_id=info:sid/www.isinet.com:WoK:WOS&rft.au=Robertson%2C%20Brita&rft_id=info:pmid/27780050&rft_id=info:doi/10%2E1016%2Fj%2Ecub%2E2016%2E06%2E041
  133. ^ https://zfin.org/action/ontology/term-detail/term?name=endopeduncular%20nucleus*&ontologyName=zebrafish_anatomy,cellular_component,molecular_function,biological_process,disease_ontology
  134. ^ https://www.ncbi.nlm.nih.gov/pubmed/21858823
  135. ^ https://www.ncbi.nlm.nih.gov/pubmed/15374668
  136. ^ http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1096-9861(19980808)395:3%3C359::AID-CNE7%3E3.0.CO;2-1/full
  137. ^ > In the substantia nigra pars reticulata (SNr), GABAergic neurons fire spontaneously at relatively high firing rates, typically 30 spikes per second https://elifesciences.org/articles/15271
  138. ^ https://elifesciences.org/articles/15271
  139. ^ https://www.frontiersin.org/articles/10.3389/fnsys.2014.00007/full
  140. ^ http://europepmc.org/articles/pmc2828780