NOTゲート

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索
入力
A
出力
NOT A
L H
H L

NOTゲートはデジタル論理回路の一種で、論理否定を実装したものである。右に挙げた真理値表に従った動作をする。インバータ (inverter) とも呼ぶ。

ただしそれはデジタル回路としての「完全な」スイッチング動作を仮定した定義である。実際にはインバータ回路設計時にその電気特性を注意深く考慮する必要がある。実際CMOSインバータの理想的でない「遷移領域」を利用し、アナログ回路A級増幅回路として使うこともある(例えば、オペアンプの出力段として使う[1])。

記号[編集]

NOTゲートを表す記号は3種類(ANSIIECDIN)ある。

NOT ANSI Labelled.svg NOT-Gate DIN40900.svg NOT DIN.svg
ANSI 記号 IEC 記号 DIN 記号

電子回路での実装[編集]

インバータ回路は、入力の電圧の論理レベルを逆転させて出力する。インバータは、NMOSまたはPMOSMOSFETを1個と抵抗器の組合せで構築できる。このような「ドレイン抵抗」方式ならトランジスタの種類は1種類で済み、低コストで製造できる。しかし、論理レベルがどちらであっても抵抗器に電流が流れ続けるため、電力消費量とスイッチング速度の面では問題がある。一方、CMOS構成で相補的な2つのトランジスタを使ってインバータを構築することもできる。こちらはトランジスタのどちらか一方が常にOFFになるため、劇的に消費電力を低減できる。NMOSのみまたはPMOSのみのデバイスに比べると抵抗値が低いため、スイッチング速度も改善される。バイポーラトランジスタでインバータを構築することもでき、RTL (resistor-transistor logic) または TTL (transistor-transistor logic) で構成できる。

デジタル回路は論理の0と1に対応する固定の電圧レベルで運用される。NOTゲートは基本ゲートの一種として、それら2つの電圧レベルの入れ替えを行う。実際の電圧は実装によって異なるが、例えばTTLでは0Vと+5Vといった電圧が一般的である。

回路部品としてのNOTゲート[編集]

NOTゲートを実装した汎用ロジックIC 4049 (CMOS) のピン配置

NOTゲートは基本的論理回路の1つである。ラッチ回路マルチプレクサデコーダ状態機械など様々なデジタル回路で使われている。

「ヘックス・インバータ」とは、インバータ(NOTゲート)を6個実装した集積回路である。例えば、TTL汎用ロジックICである7404は14ピンのヘックス・インバータであり、CMOSの4049は16ピンのヘックス・インバータである。個々のNOTゲートは入力と出力の2ピンがあるので12ピンを必要とし、残るピンのうち2ピンが電源と接地用となる(4049では2ピンが未使用)。

性能測定[編集]

インバータの性能は電圧伝達曲線 (Voltage Transfer Curve) で測定することが多い。これは入力電圧と出力電圧の関係をグラフにしたものである。そのようなグラフから、そのデバイスの耐雑音性、利得、論理レベルとして使用可能な電圧範囲などのパラメータが得られる。

ノースカロライナ州立大学で構築した20μmのインバータの電圧伝達曲線

理想的なNOTゲートでは、電圧伝達曲線 (VTC) はステップ関数を逆転させた形となる。つまり、入力電圧はある特定の電圧を境としてONかOFFかが判定され、逆転されることになる。しかし実際のデバイスでは2つの電圧レベルの間で徐々に変化する領域が存在する。一般に入力電圧が低ければ出力電圧は高く、入力電圧が高ければ出力電圧は低くなり限りなく0Vに近づいていく。この曲線の傾斜がNOTゲートの性能を表し、傾斜が急峻なほどスイッチングが正確となる。

耐雑音性は、図の VOH と VIL の比で示される。これらの電圧は運用時にHIGHとLOWの電圧範囲をどう設定するかで変わってくる。

出力電圧 VOH は、多数のデバイスをカスケード接続する際の信号駆動強度に対応する。

脚注・出典[編集]

関連項目[編集]

外部リンク[編集]