「射影 (集合論)」の版間の差分

出典: フリー百科事典『ウィキペディア(Wikipedia)』
削除された内容 追加された内容
Gsubmodal (会話 | 投稿記録)
編集の要約なし
Gsubmodal (会話 | 投稿記録)
de:Projektion (Mengenlehre) 18:40, 6. Aug. 2016
1行目: 1行目:
[[数学]]の[[集合論]]における'''射影'''(しゃえい、{{Lang-en-short|projection}})は、[[デカト積]] <math>X_1 \times \cdots \times X_j \times \cdots \times X_k</math> の元 <math>\vec{x} = (x_1,\ldots,x_j,\ldots,x_k)</math> に対して値 <math>\operatorname{proj}_{j}(\vec{x}) = x_j</math> 与える標準的な {{mvar|j}}<sup>th</sup>-射影写像に代表る[[集合論]]的演算をいう{{sfn|Halmos|p= [{{google books |id= x6cZBQ9qtgoC |page=32 |text=projection |plainurl=1}} 32]}}。
[[数学]]の[[集合論]]における'''射影'''(しゃえい、{{Lang-en-short|projection}})あるい'''射影写像'''特に'''標準射影'''は[[タプ|順序組]]に対してその一つの成分対応る[[写像]]である{{sfn|Halmos|1960|p= [{{google books |id= x6cZBQ9qtgoC |page=32 |text=projection |plainurl=1}} 32]}}。より一般に'''射影'''は、[[集合]]の[[添字集合|添え字付けられた]]任意の[[族 (数学)|族]]の[[集合の直積|直積]](デカルト積)上で定義された、[[元 (数学)|元]]の族から特定の[[添字記法|添字]]をもつ成分を選び出す写像を言う。[[選択公理]]を仮定すれば、[[空集合|空]]でない集合からなる任意の族に関して、射影は必ず[[全射]]になる

射影は、[[集合論]]、[[位相空間論]]、{{仮リンク|測度論|de|Maßtheorie|preserve=1}}など様々な分野において、あるいはまた、[[リレーショナルデータベース]]における[[演算]]としても用いられる。場合により、'''座標函数''' ({{en|''co&shy;ordinate function''}}) や '''評価写像''' ({{en|evaluation map'')}} などと呼ばれることもある。

== 定義 ==
任意の[[添字集合]] {{mvar|I}} を持つ集合族 {{math|(''X{{sub|i}}''){{sub|''i''∈''I''}}}} に対し、それらの[[デカルト積]] {{math|''X{{sub|I}}'' {{coloneqq}} &prod;{{su|b=''i''∈''I''}} ''X{{sub|i}}''}} を考える。いま {{math|''J'' &sub; ''I''}} を {{mvar|I}} の[[部分集合]]とすれば、{{mvar|J}} 上の'''射影''' {{mvar|π{{sub|J}}}} とは、[[写像]]
: <math>\pi_J \colon X_I \to X_J, \quad (x_i)_{i \in I} \mapsto (x_j)_{j \in J}</math>
を言う。すなわち、射影 {{mvar|π{{sub|J}}}} によって元の族 {{math|(''x{{sub|i}}'' ∈ ''X{{sub|i}}''){{sub|''i''∈''I''}}}} は、添字集合 {{mvar|J}} で添字付けられた元の族となる。添字集合が[[一元集合]] {{math|1=''J'' = {{mset|''j''}}}} であるときには、射影 {{mvar|π{{sub|J}}}} は簡単に {{mvar|π{{sub|j}}}} とも書かれる{{sfn|Halmos|1960|p=36}}。

== 例 ==
=== 順序対の成分 ===
添字集合がちょうど二つの元からなるとき、それを {{math|1=I = {{mset|1, 2}}}} とすれば、考えるデカルト積は {{math|1=''X{{sub|I}}'' = ''X''{{sub|1}} × ''X''{{sub|2}}}} で、これは二つの集合 {{math|''X''{{sub|1}}, ''X''{{sub|2}}}} の元の[[順序対]]全体の成す集合である。このとき、順序対 {{math|(''x''{{sub|1}}, ''x''{{sub|2}})}} の第一および第二成分への射影が
: <math>\pi_1 \colon X_1 \times X_2 \to X_1, \quad (x_1,x_2) \mapsto x_1</math>
および
: <math>\pi_2 \colon X_1 \times X_2 \to X_2, \quad (x_1,x_2) \mapsto x_2</math>
によって与えられる。例えば {{math|(''x'', ''y'' ∈ '''R'''{{sup|2}}}} が[[ユークリッド平面]]上の[[点 (数学)|点]]の[[直交座標系|デカルト座標]]の場合には、射影 {{math|''π''{{sub|1}}}} および {{math|''π''{{sub|2}}}} はそれぞれ、この点の {{mvar|x}}-座標および {{mvar|y}}-座標を与えるものである。これら射影は形式的には、二つある各座標への{{仮リンク|正射影|en|Orthographic projection|de|Orthogonalprojektion}}(すなわち {{math|(''x'', ''y'') {{mapsto}} (''x'', 0)}} および {{math|(''x'', ''y'') {{mapsto}} (0, ''y'')}} で与えられる写像 {{math|'''R'''{{sup|2}} → '''R'''{{sup|2}}}})とは異なる。

=== 成分への標準射影 ===
添字集合が {{mvar|n}} 個の元からなる {{math|1=''I'' = {{mset|1, …, ''n''}}}} であるとき、デカルト積 {{math|1=''X{{sub|I}}'' = ''X''{{sub|1}} × ⋯ × ''X{{sub|n}}''}} は、{{mvar|i}}-番目の成分が {{math|''x{{sub|i}}'' ∈ ''X{{sub|i}}''}} となっているような {{mvar|n}}-[[タプル|組]]の集合である。第 {{mvar|j}}-成分への標準射影 {{mvar|π{{sub|j}}}} は写像
: <math>\pi_j \colon X_1 \times \ldots \times X_n \to X_j;\; \quad (x_1, \ldots , x_n) \mapsto x_j</math>
として与えられ、この値は {{mvar|j}}-番目の成分のみからなる一元集合としての[[タプル|順序組]]である{{sfn|Fischer|2008|p=38}}。任意の順序組 {{math|''T'' ∈ ''X{{sub|I}}''}} は {{math|1=''T'' = (''π''{{sub|1}}(''T''), …, ''π{{sub|n}}''(''T''))}} と書くことができる。

=== 評価写像 ===
任意の直積因子 {{mvar|X{{sub|i}}}} がすべて同じ集合 {{mvar|X}} であるとき、デカルト積 {{math|1=''X{{sub|I}}'' = ''X{{sup|I}}''}} は集合 {{math|''f'': ''I'' → ''X''}} 全体の成す集合である。この場合の射影 {{mvar|π{{sub|j}}}} は写像
: <math>\pi_j \colon X^I \to X;\; f \mapsto \pi_j(f) = f(j)</math>,
で、これは各写像に対して引数 {{mvar|j}} に対するその写像の値を割り当てるものになっている。ゆえにこの写像は評価写像とも呼ばれる{{sfn|Halmos|1960}}{{sfn|Wengenroth|2008|p=14}}。

== 性質 ==
=== 全射性 ===
添字集合 {{mvar|I}} に対し各集合 {{mvar|X{{sub|i}}}} が[[空集合|空]]でないとき、射影は[[全射]]であり、したがって
: <math>\pi_J(X_I) = X_J</math>
を満たす。しかし、空でない集合からなる任意の集合族のデカルト積が空でないことを保証するには[[選択公理]]が必要である。実は上に挙げた主張が成り立つのは選択公理と同値である。したがって選択公理の仮定の下、空でない集合からなる任意の集合族に対して、任意の射影は必ず全射である{{sfn|Willard|2012|p=52}}。

=== 逆像 ===
{{math|''J'' &sub; ''I''}} が添字集合 {{mvar|I}} の真の部分集合で、{{math|''W'' &sub; ''X{{sub|J}}''}} を射影 {{mvar|π{{sub|J}}}} の[[終域]]の部分集合とするとき、{{mvar|W}} の逆像は
: <math>\pi_J^{-1}(W) = W \times X_{I \setminus J} = \{ (x_i)_{i\in I} \in X_I \mid (x_j)_{j\in J} \in W \}</math>
と書くことができる。従って集合 {{math|{{subsup|''π''|''J''|&minus;1}}(''W'')}} は{{仮リンク|円筒集合|de|Zylindermenge}}でもある{{sfn|Kusolitsch|2014|p=6}}。

== 応用 ==
=== 位相空間論 ===
各添字 {{math|''i'' ∈ ''I''}} に対する集合 {{mvar|X{{sub|i}}}} が[[位相空間]]であるとき、デカルト積 {{mvar|X{{sub|I}}}} 上の[[積位相]]は全ての射影 {{mvar|π{{sub|j}}}} を[[連続写像|連続]]にする{{仮リンク|位相の比較|en|Comparison of topologies|label=最も弱い位相}}([[開集合]]が最も少ない位相)をいう。このとき、{{mvar|U{{sub|j}}}} が {{mvar|X{{sub|j}}}} の開集合であるときの円筒集合 {{math|{{subsup|''π''|''j''|&minus;1}}(''U{{sub|j}}'')}} 全体の成す集合が、積空間 {{mvar|X{{sub|I}}}} の{{仮リンク|準開基|en|Subbase}} を成す。積空間を以下のような[[積 (圏論)|圏論的直積]]の[[普遍性]]によって特徴づけることもできる:
; 積位相空間の普遍性
: 任意の位相空間 {{mvar|Y}} と連続写像の族 {{math|''f{{sub|j}}'': ''Y'' → ''X{{sub|j}}'' (''j'' ∈ ''I'')}} の組が与えられれば、一意的な連続写像 {{math|''f'': ''Y'' → ''X{{sub|I}}''}} が存在して {{math|1=''π{{sub|j}}'' ∘ ''f'' = ''f{{sub|j}}''}} が任意の {{mvar|j}} に対して成立する。

逆に、与えられた写像 {{math|''f'': ''Y'' → ''X{{sub|I}}''}} が連続ならば、任意の射影 {{math|''π{{sub|j}}'' ∘ ''f''}} は連続である。連続性に加えて、任意の射影 {{math|''π{{sub|j}}'' ∘ ''X{{sub|I}}'' → ''X{{sub|j}}''}} は[[開写像]]、すなわち積空間 {{mvar|X{{sub|I}}}} の各開部分集合 {{math|''W'' &sub; ''X{{sub|I}}''}} の射影像が {{mvar|X{{sub|j}}}} の開集合となる。ただし、逆は成り立たない: すなわち積空間の部分集合 {{math|''W'' &sub; ''X{{sub|I}}''}} の射影 {{math|''π{{sub|j}}'': ''W'' → ''X{{sub|j}}''}} がすべて開でも、{{mvar|W}} は {{mvar|X{{sub|I}}}} において開とは限らない。射影 {{math|''π{{sub|j}}'': ''X{{sub|I}}'' → ''X{{sub|j}}''}} は一般には完備でもない。

=== 測度論 ===
[[可測空間]]の族 {{math|(Ω{{sub|''i''}}, ''𝒜{{sub|i}}'') (''i'' ∈ ''I'')}} に対し、{{仮リンク|直積σ-代数|label=直積 {{mvar|σ}}-集合体|de|Produkt-σ-Algebra}}
: <math>\bigotimes_{i \in I} \mathcal{A}_i = \sigma \left( \left\{ \pi_j^{-1}(A_j) \mid A_j \in \mathcal {A}_j, j \in I \right\} \right) = \sigma \left( \bigcup_{j \in I}\pi_j^{-1}(\mathcal{A}_j) \right)</math>
は、デカルト積 {{math|Ω{{sub|''I''}}}} 上の、{{math|Ω{{sub|''i''}}}} への射影をすべて[[可測函数|可測]]にする最小の {{mvar|σ}}-集合体である。この直積 {{mvar|σ}}-集合体は、任意の有限添字集合 {{mvar|J}} に対する円筒集合族が生成するものとして定めることもできる。[[測度論]]および{{仮リンク|確率統計論|de|Stochastik}}において、直積 {{mvar|σ}}-集合体は[[測度空間]]の[[積測度|直積]]および[[確率空間]]の直積を定める基礎を与える{{sfn|Wengenroth|2008}}。

=== 計算機科学 ===
射影は[[リレーショナルデータベース]]の[[演算]]としても用いられる。{{mvar|R}} を[[関係 (データベース)|関係]]、{{math|{{mset|''A''{{sub|1}}, …, ''A{{sub|k}}''}}}} を[[属性 (データベース)|属性]]の部分集合とすれば、[[関係代数 (関係モデル)#射影|射影]]の結果
: <math>\Pi_{ A_1, \ldots , A_k }(R) = \{ T[A_1, \ldots , A_n] \mid T \in R \}</math>
は特定の属性のリストにある属性に制約した新たな関係となる。得られた新しい関係では重複するエントリーは除かれている。


== 関連項目 ==
== 関連項目 ==
10行目: 64行目:
{{reflist}}
{{reflist}}
== 参考文献 ==
== 参考文献 ==
* {{citation |title= Naive Set Theory |series= [[Undergraduate Texts in Mathematics]] |first= P. R. |last= Halmos |publisher= Springer |year= 1960 |isbn= 9780387900926}}
* {{citation |language=en|title= Naive Set Theory |series= [[Undergraduate Texts in Mathematics]] |first= P. R. |last= Halmos |publisher= Springer |year= 1960 |isbn= 9780387900926}}
* {{Literatur|Originalsprache=de|Autor=[[Gerd Fischer (Mathematiker)|Gerd Fischer]]|Titel=Lineare Algebra: eine Einführung für Studienanfänger|Verlag=Springer|Jahr=2008|ISBN=3-834-89574-1}}
* {{Literatur|Originalsprache=de|Autor=Norbert Kusolitsch|Titel=Maß- und Wahrscheinlichkeitstheorie|Verlag=Springer|Jahr=2014|ISBN=978-3-642-45387-8}}
* {{Literatur|Originalsprache=de|Autor=Jochen Wengenroth|Titel=Wahrscheinlichkeitstheorie|Verlag=de Gruyter|Jahr=2008|ISBN=978-3-110-20359-2}}
* {{Literatur|Originalsprache=en|Autor=Stephen Willard|Titel=General Topology|Verlag=Courier Dover Publications|Jahr=2012|ISBN=978-0-486-13178-8}}


{{DEFAULTSORT:しやえいしゆうこうろん}}
{{DEFAULTSORT:しやえいしゆうこうろん}}
[[Category:集合]]
[[Category:集合の基本概念]]
[[category:写像]]
[[Category:数学に関する記事]]
[[Category:数学に関する記事]]
{{Math-stub}}

2017年1月11日 (水) 16:31時点における版

数学集合論における射影(しゃえい、: projection)あるいは射影写像、特に標準射影順序組に対してその一つの成分を対応させる写像である[1]。より一般に射影は、集合添え字付けられた任意の直積(デカルト積)上で定義された、の族から特定の添字をもつ成分を選び出す写像を言う。選択公理を仮定すれば、でない集合からなる任意の族に関して、射影は必ず全射になる。

射影は、集合論位相空間論測度論ドイツ語版など様々な分野において、あるいはまた、リレーショナルデータベースにおける演算としても用いられる。場合により、座標函数 (co­ordinate function) や 評価写像 (evaluation map) などと呼ばれることもある。

定義

任意の添字集合 I を持つ集合族 (Xi)iI に対し、それらのデカルト積 XI ≔ ∏
iI
Xi
を考える。いま JII部分集合とすれば、J 上の射影 πJ とは、写像

を言う。すなわち、射影 πJ によって元の族 (xiXi)iI は、添字集合 J で添字付けられた元の族となる。添字集合が一元集合 J = {j} であるときには、射影 πJ は簡単に πj とも書かれる[2]

順序対の成分

添字集合がちょうど二つの元からなるとき、それを I = {1, 2} とすれば、考えるデカルト積は XI = X1 × X2 で、これは二つの集合 X1, X2 の元の順序対全体の成す集合である。このとき、順序対 (x1, x2) の第一および第二成分への射影が

および

によって与えられる。例えば (x, yR2ユークリッド平面上のデカルト座標の場合には、射影 π1 および π2 はそれぞれ、この点の x-座標および y-座標を与えるものである。これら射影は形式的には、二つある各座標への正射影英語版ドイツ語版(すなわち (x, y) ↦ (x, 0) および (x, y) ↦ (0, y) で与えられる写像 R2R2)とは異なる。

成分への標準射影

添字集合が n 個の元からなる I = {1, …, n} であるとき、デカルト積 XI = X1 × ⋯ × Xn は、i-番目の成分が xiXi となっているような n-の集合である。第 j-成分への標準射影 πj は写像

として与えられ、この値は j-番目の成分のみからなる一元集合としての順序組である[3]。任意の順序組 TXIT = (π1(T), …, πn(T)) と書くことができる。

評価写像

任意の直積因子 Xi がすべて同じ集合 X であるとき、デカルト積 XI = XI は集合 f: IX 全体の成す集合である。この場合の射影 πj は写像

,

で、これは各写像に対して引数 j に対するその写像の値を割り当てるものになっている。ゆえにこの写像は評価写像とも呼ばれる[4][5]

性質

全射性

添字集合 I に対し各集合 Xiでないとき、射影は全射であり、したがって

を満たす。しかし、空でない集合からなる任意の集合族のデカルト積が空でないことを保証するには選択公理が必要である。実は上に挙げた主張が成り立つのは選択公理と同値である。したがって選択公理の仮定の下、空でない集合からなる任意の集合族に対して、任意の射影は必ず全射である[6]

逆像

JI が添字集合 I の真の部分集合で、WXJ を射影 πJ終域の部分集合とするとき、W の逆像は

と書くことができる。従って集合 π −1
J
 
(W)
円筒集合ドイツ語版でもある[7]

応用

位相空間論

各添字 iI に対する集合 Xi位相空間であるとき、デカルト積 XI 上の積位相は全ての射影 πj連続にする最も弱い位相英語版開集合が最も少ない位相)をいう。このとき、UjXj の開集合であるときの円筒集合 π −1
j
 
(Uj)
全体の成す集合が、積空間 XI準開基 を成す。積空間を以下のような圏論的直積普遍性によって特徴づけることもできる:

積位相空間の普遍性
任意の位相空間 Y と連続写像の族 fj: YXj (jI) の組が与えられれば、一意的な連続写像 f: YXI が存在して πjf = fj が任意の j に対して成立する。

逆に、与えられた写像 f: YXI が連続ならば、任意の射影 πjf は連続である。連続性に加えて、任意の射影 πjXIXj開写像、すなわち積空間 XI の各開部分集合 WXI の射影像が Xj の開集合となる。ただし、逆は成り立たない: すなわち積空間の部分集合 WXI の射影 πj: WXj がすべて開でも、WXI において開とは限らない。射影 πj: XIXj は一般には完備でもない。

測度論

可測空間の族 i, 𝒜i) (iI) に対し、直積 σ-集合体ドイツ語版

は、デカルト積 ΩI 上の、Ωi への射影をすべて可測にする最小の σ-集合体である。この直積 σ-集合体は、任意の有限添字集合 J に対する円筒集合族が生成するものとして定めることもできる。測度論および確率統計論ドイツ語版において、直積 σ-集合体は測度空間直積および確率空間の直積を定める基礎を与える[8]

計算機科学

射影はリレーショナルデータベース演算としても用いられる。R関係{A1, …, Ak}属性の部分集合とすれば、射影の結果

は特定の属性のリストにある属性に制約した新たな関係となる。得られた新しい関係では重複するエントリーは除かれている。

関連項目

参考文献

  • Halmos, P. R. (1960) (英語), Naive Set Theory, Undergraduate Texts in Mathematics, Springer, ISBN 9780387900926 
  • Gerd Fischer (2008), Lineare Algebra: eine Einführung für Studienanfänger (Template:ISO 639 name), Springer, ISBN 3-834-89574-1 {{citation}}: 不明な引数|Comment=が空白で指定されています。 (説明)
  • Norbert Kusolitsch (2014), Maß- und Wahrscheinlichkeitstheorie (Template:ISO 639 name), Springer, ISBN 978-3-642-45387-8 {{citation}}: 不明な引数|Comment=が空白で指定されています。 (説明)
  • Jochen Wengenroth (2008), Wahrscheinlichkeitstheorie (Template:ISO 639 name), de Gruyter, ISBN 978-3-110-20359-2 {{citation}}: 不明な引数|Comment=が空白で指定されています。 (説明)
  • Stephen Willard (2012), General Topology (Template:ISO 639 name), Courier Dover Publications, ISBN 978-0-486-13178-8 {{citation}}: 不明な引数|Comment=が空白で指定されています。 (説明)