コンテンツにスキップ

「NMDA型グルタミン酸受容体」の版間の差分

出典: フリー百科事典『ウィキペディア(Wikipedia)』
削除された内容 追加された内容
編集の要約なし
編集の要約なし
8行目: 8行目:


== 構造 ==
== 構造 ==

NR1 と NR2 のヘテロ2量体2セットからなる4つのサブユニットで構成されていると考えられており、ゆえに全ての NMDA受容体は NR1サブユニットを含む(ただしいくつもの[[スプライシング|スプライス]]バリアントが報告されている)。NR2サブユニットにはさらに NR2A、NR2B、NR2C、NR2D の4種類が[[クローニング]]されており、それぞれ生体内での発現部位や発現時期が異なる。たとえば、NR2Dサブユニットは胎生期に選択的に発現するサブユニットであると考えられている。なお、NR2サブユニットにグルタミン酸の結合部位があると考えられている。
NR1 と NR2 のヘテロ2量体2セットからなる4つのサブユニットで構成されていると考えられており、ゆえに全ての NMDA受容体は NR1サブユニットを含む(ただしいくつもの[[スプライシング|スプライス]]バリアントが報告されている)。NR2サブユニットにはさらに NR2A、NR2B、NR2C、NR2D の4種類が[[クローニング]]されており、それぞれ生体内での発現部位や発現時期が異なる。たとえば、NR2Dサブユニットは胎生期に選択的に発現するサブユニットであると考えられている。なお、NR2サブユニットにグルタミン酸の結合部位があると考えられている。


近年、新たに NR3A、NR3B という二つのサブユニットがクローニングされたが、これらはグルタミン酸結合部位を持たず、NR1 とヘテロ多量体を形成して陽イオンを通す、興奮性グリシン受容体として働くという報告もされている。
近年、新たに NR3A、NR3B という二つのサブユニットがクローニングされたが、これらはグルタミン酸結合部位を持たず、NR1 とヘテロ多量体を形成して陽イオンを通す、興奮性グリシン受容体として働くという報告もされている。

== 電気生理学的特性 ==
[[ファイル:NMDA_IV.jpg|96px|thumb|NMDA受容体の[[I-Vプロット]]のイメージ]]
NMDA受容体は通常不活性な性質を持つ。これは、細胞外からのマグネシウムイオンがこの受容体の活動を阻害しているためである(マグネシウム・ブロック)。ただし、これは[[膜電位]]が大きく負の時に限られている。そのため、膜電位が正であるか、−10~−20 mV 程度の範囲においてはマグネシウムイオン阻害がかからず、結果として受容体の[[電気生理学]]的特性は[[オームの法則]]に従う。膜電位が大きく負になるとマグネシウムイオンの阻害がかかり始め、−60~−70 mV 程度の[[静止膜電位]]に相当する膜電位では、ほとんど電流を流さない。これらのことから、NMDA型受容体は外向き[[整流性]]を持つ、と称される。また、刺激に応じて流す電流は、AMPA受容体に比べて遅く、持続的である。


== アゴニスト・アンタゴニスト ==
== アゴニスト・アンタゴニスト ==
23行目: 26行目:
選択的[[アンタゴニスト]]としては[[競合阻害剤]]の[[D-AP5]]や、開口チャネル阻害剤の[[MK-801]]などが知られる。機能的アンタゴニストとしては[[ミノサイクリン]]がある。
選択的[[アンタゴニスト]]としては[[競合阻害剤]]の[[D-AP5]]や、開口チャネル阻害剤の[[MK-801]]などが知られる。機能的アンタゴニストとしては[[ミノサイクリン]]がある。


=== 主な薬剤の結合親和性の比較 ===
=== 主な薬剤の結合親和性 ===
; [[ジゾシルピン]]
; [[ジゾシルピン]]
: K<sub>i</sub>=30.5nM<ref>[http://www.namiki-s.co.jp/service/products/compound_detail.php?code=HY-15084 (+)-MK 801 (Maleate) 詳細情報] [[ナミキ商事株式会社]]</ref>
: K<sub>d</sub>=1.8nM


; [[ミノサイクリン]]
; [[ミノサイクリン]]
: IC<sub>50</sub>=20nM(NMDA誘導神経細胞死の阻害)<ref name="pmid11390507">{{cite journal |author=Tikka TM, Koistinaho JE. |title=Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia. |journal=[[:en:Journal of Immunology]]. |volume=166 |issue=12 |pages=7527-33 |date=2001-6-15 |url=http://www.jimmunol.org/content/166/12/7527.full |doi=10.4049/​jimmunol.166.12.7527 |pmid=11390507}}</ref>。
: IC<sub>50</sub>=20nM
: フェンサイクリジン拮抗作用(機能的アンタゴニスト)<ref name="pmid17884273">{{cite journal |author=Fujita Y, Ishima T, Kunitachi S, Hagiwara H, Zhang L, Iyo M, Hashimoto K. |title=Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the antibiotic drug minocycline. |journal=[[:en:Progress in Neuro-Psychopharmacology & Biological Psychiatry]]. |volume=32 |issue=2 |pages=336-9 |date=2008-2-15 |url=u=http://www.sciencedirect.com/science/article/pii/S0278584607003193 |doi=10.1016/j.pnpbp.2007.08.031 |pmid=17884273}}</ref>。


; [[フェンサイクリジン]]
; [[フェンサイクリジン]]
: K<sub>i</sub>=313nM<ref name="pmid15852061">{{cite journal |author=Seeman P, Ko F, Tallerico T. |title=Dopamine receptor contribution to the action of PCP, LSD and ketamine psychotomimetics. |journal=[[:en:Molecular Psychiatry]]. |volume=10 |issue=9 |pages=877-83 |date=2005-9 |url=http://www.nature.com/mp/journal/v10/n9/full/4001682a.html |doi=10.1038/sj.mp.4001682 |pmid=15852061}}</ref>
: K<sub>i</sub>=313nM


; [[メマンチン]]
; [[メマンチン]]
: K<sub>i</sub>=670nM(PCP結合部位)<ref name=memantine_ctd_neuroprotection>{{cite web |title=メマンチン塩酸塩 国際共通化資料(CTD)神経細胞保護作用 |url=https://www.pmda.go.jp/drugs/2011/P201100018/43057400_22300AMX00423_H100_2.pdf |format=pdf |work=www.pmda.go.jp |publisher=[[第一三共株式会社]] |accessdate=2016-8-3}}</ref>
: K<sub>i</sub>=670nM
: IC<sub>50</sub>=1.47µM(PCP結合部位、[3H]-MK-801置換)<ref name=memantine_ctd_neuroprotection />


; [[ハロペリドール]]
; [[ハロペリドール]]
: IC<sub>50</sub>=2,000nM(サブユニットNR1A/2B)<ref>{{cite journal |author=Ilyin VI, Whittemore ER, Guastella J, Weber E, Woodward RM. |title=Subtype-selective inhibition of N-methyl-D-aspartate receptors by haloperidol. |journal=[[:en:Molecular Pharmacology]]. |year=1996 |volume=50 |issue=6 |pages=1541-50 |url=http://molpharm.aspetjournals.org/cgi/pmidlookup?view=long&pmid=8967976 |pmid=8967976}}</ref>
: K<sub>i</sub>=2,000nM

; [[オセルタミビル]]
: IC<sub>14</sub>=3µM(PCP結合部位、未変化体OT)<ref name="pmid27364959">{{cite journal |author=Hama R, Bennett CL. |title=The mechanisms of sudden-onset type adverse reactions to oseltamivir. |journal=[[:en:Acta Neurologica Scandinavica]]. |date=2016-6-30 |volume= |issue= |page= |url=http://onlinelibrary.wiley.com/doi/10.1111/ane.12629/abstract |doi=10.1111/ane.12629 |pmid=27364959}}</ref><ref name="pmid27251370">{{cite journal |author=Hama R. |title=The mechanisms of delayed onset type adverse reactions to oseltamivir. |journal=[[Journal of Infectious Diseases]]. |date=2016-9 |volume=48 |issue=9 |pages=651-60 |url=http://onlinelibrary.wiley.com/doi/10.1111/ane.12629/abstract |doi=10.1080/23744235.2016.1189592 |pmid=27251370}}</ref>
: IC<sub>23</sub>=30µM(PCP結合部位、未変化体OT)<ref name="pmid27364959" /><ref name="pmid27251370" />
: IC<sub>21</sub>=3µM(PCP結合部位、活性代謝物OC)<ref name="pmid27364959" /><ref name="pmid27251370" />


; [[ケタミン]]
; [[ケタミン]]
: K<sub>i</sub>=3,200nM(S(+)体)<ref name="pmid8942324">{{cite journal |author=Hirota K, Lambert DG. |title= Ketamine: Its mechanism(s) of action and unusual clinical uses. |journal=[[:en:British Journal of Anaesthesia]]. |date=1996-10 |volume=77 |issue=4 |pages=441-4 |url=http://bja.oxfordjournals.org/content/77/4/441.long |doi=10.1093/bja/77.4.441 |pmid=8942324}}</ref>
: K<sub>i</sub>=3,100nM
: K<sub>i</sub>=1,100nM(R(-)体)<ref name="pmid8942324" />


; [[デキストロメトルファン]]
; [[デキストロメトルファン]]
: K<sub>i</sub>=7,253nM(PCP結合部位)<ref name="pmid24648790">{{Cite journal |author=Boyer Edward, Burns Jarrett. |title=Antitussives and substance abuse. |journal=[[:en:Substance Abuse and Rehabilitation]]. |year=2013 |volume=4 |pages=75-82 |doi=10.2147/SAR.S36761 |pmc=3931656 |pmid=24648790}}</ref>
: K<sub>i</sub>=7,253nM


これらは概ね結合親和性に関連して[[オルニーの病変]]が起こる。ジゾシルピンは極低用量の投与でオルニーの病変が起こる。NMDA受容体アンタゴニストは神経保護剤であり、神経毒でもある。
これらは概ね結合親和性に関連して[[オルニーの病変]]が起こる。ジゾシルピンは極低用量の投与でオルニーの病変が起こる。NMDA受容体アンタゴニストは神経保護剤であり、神経毒でもある。


== 脚注・出典 ==
== 電気生理学的特性 ==
{{脚注ヘルプ}}
[[ファイル:NMDA_IV.jpg|thumb|NMDA受容体の[[I-Vプロット]]のイメージ]]
{{reflist|2}}
NMDA受容体は通常不活性な性質を持つ。これは、細胞外からのマグネシウムイオンがこの受容体の活動を阻害しているためである(マグネシウム・ブロック)。ただし、これは[[膜電位]]が大きく負の時に限られている。そのため、膜電位が正であるか、−10~−20 mV 程度の範囲においてはマグネシウムイオン阻害がかからず、結果として受容体の[[電気生理学]]的特性は[[オームの法則]]に従う。膜電位が大きく負になるとマグネシウムイオンの阻害がかかり始め、−60~−70 mV 程度の[[静止膜電位]]に相当する膜電位では、ほとんど電流を流さない。これらのことから、NMDA型受容体は外向き[[整流性]]を持つ、と称される。また、刺激に応じて流す電流は、AMPA受容体に比べて遅く、持続的である。


== 関連 ==
== 関連 ==

2016年8月3日 (水) 05:31時点における版

NMDA型グルタミン酸受容体(エヌエムディーエーがたグルタミンさんじゅようたい)はグルタミン酸受容体の一種。記憶学習、また脳虚血後の神経細胞死などに深く関わる受容体であると考えられている。他のグルタミン酸受容体サブタイプである AMPA受容体カイニン酸受容体と異なり、NMDA(N-メチル-D-アスパラギン酸)がアゴニストとして選択的に作用することから分類された。

概要

中枢神経系を中心に生体内に広く分布し、リガンドであるグルタミン酸の結合を経て、陽イオンを透過する、イオンチャネル共役型受容体である。

リガンドを受容した NMDA受容体が透過させる陽イオンには特に選択性がなく、ナトリウムイオン (Na+) やカリウムイオン (K+) の他に、カルシウムイオン (Ca2+) も通すことが知られている。

構造

NR1 と NR2 のヘテロ2量体2セットからなる4つのサブユニットで構成されていると考えられており、ゆえに全ての NMDA受容体は NR1サブユニットを含む(ただしいくつものスプライスバリアントが報告されている)。NR2サブユニットにはさらに NR2A、NR2B、NR2C、NR2D の4種類がクローニングされており、それぞれ生体内での発現部位や発現時期が異なる。たとえば、NR2Dサブユニットは胎生期に選択的に発現するサブユニットであると考えられている。なお、NR2サブユニットにグルタミン酸の結合部位があると考えられている。

近年、新たに NR3A、NR3B という二つのサブユニットがクローニングされたが、これらはグルタミン酸結合部位を持たず、NR1 とヘテロ多量体を形成して陽イオンを通す、興奮性グリシン受容体として働くという報告もされている。

電気生理学的特性

NMDA受容体のI-Vプロットのイメージ

NMDA受容体は通常不活性な性質を持つ。これは、細胞外からのマグネシウムイオンがこの受容体の活動を阻害しているためである(マグネシウム・ブロック)。ただし、これは膜電位が大きく負の時に限られている。そのため、膜電位が正であるか、−10~−20 mV 程度の範囲においてはマグネシウムイオン阻害がかからず、結果として受容体の電気生理学的特性はオームの法則に従う。膜電位が大きく負になるとマグネシウムイオンの阻害がかかり始め、−60~−70 mV 程度の静止膜電位に相当する膜電位では、ほとんど電流を流さない。これらのことから、NMDA型受容体は外向き整流性を持つ、と称される。また、刺激に応じて流す電流は、AMPA受容体に比べて遅く、持続的である。

アゴニスト・アンタゴニスト

NMDA受容体(活性化時)

この受容体を構成する主要サブユニットの一つ、NR1 サブユニットにはグリシンを結合する部位があり、グリシンを結合していない NMDA型受容体は、グルタミン酸刺激によって活性化されない。また通常、細胞外マグネシウムイオン (Mg2+) によってチャネル活性が阻害されている(後述)ため、脱分極刺激などで Mg2+ を外してやらないと活動できない。つまり、活動には2種のリガンドと Mg2+ の除去が必要と言える。 従って、NMDA型受容体は、シナプス前終末からのグルタミン酸による刺激と、シナプス後膜の脱分極が同時に起こった時に活性化され、シナプス後膜からカルシウムイオンの流入を起こす、シナプス前終末とシナプス後膜の神経活動の同時検出器(coincidence detector)として機能している。

実際、研究現場においては細胞外の Mg2+ やグリシンの濃度を操作することでNMDA受容体由来の神経活動を操作するということが頻繁に行われている。

選択的アンタゴニストとしては競合阻害剤D-AP5や、開口チャネル阻害剤のMK-801などが知られる。機能的アンタゴニストとしてはミノサイクリンがある。

主な薬剤の結合親和性

ジゾシルピン
Ki=30.5nM[1]
ミノサイクリン
IC50=20nM(NMDA誘導神経細胞死の阻害)[2]
フェンサイクリジン拮抗作用(機能的アンタゴニスト)[3]
フェンサイクリジン
Ki=313nM[4]
メマンチン
Ki=670nM(PCP結合部位)[5]
IC50=1.47µM(PCP結合部位、[3H]-MK-801置換)[5]
ハロペリドール
IC50=2,000nM(サブユニットNR1A/2B)[6]
オセルタミビル
IC14=3µM(PCP結合部位、未変化体OT)[7][8]
IC23=30µM(PCP結合部位、未変化体OT)[7][8]
IC21=3µM(PCP結合部位、活性代謝物OC)[7][8]
ケタミン
Ki=3,200nM(S(+)体)[9]
Ki=1,100nM(R(-)体)[9]
デキストロメトルファン
Ki=7,253nM(PCP結合部位)[10]

これらは概ね結合親和性に関連してオルニーの病変が起こる。ジゾシルピンは極低用量の投与でオルニーの病変が起こる。NMDA受容体アンタゴニストは神経保護剤であり、神経毒でもある。

脚注・出典

  1. ^ (+)-MK 801 (Maleate) 詳細情報 ナミキ商事株式会社
  2. ^ Tikka TM, Koistinaho JE. (2001-6-15). “Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia.”. en:Journal of Immunology. 166 (12): 7527-33. doi:10.4049/​jimmunol.166.12.7527. PMID 11390507. http://www.jimmunol.org/content/166/12/7527.full. 
  3. ^ Fujita Y, Ishima T, Kunitachi S, Hagiwara H, Zhang L, Iyo M, Hashimoto K. (2008-2-15). [u=http://www.sciencedirect.com/science/article/pii/S0278584607003193 “Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the antibiotic drug minocycline.”]. en:Progress in Neuro-Psychopharmacology & Biological Psychiatry. 32 (2): 336-9. doi:10.1016/j.pnpbp.2007.08.031. PMID 17884273. u=http://www.sciencedirect.com/science/article/pii/S0278584607003193. 
  4. ^ Seeman P, Ko F, Tallerico T. (2005-9). “Dopamine receptor contribution to the action of PCP, LSD and ketamine psychotomimetics.”. en:Molecular Psychiatry. 10 (9): 877-83. doi:10.1038/sj.mp.4001682. PMID 15852061. http://www.nature.com/mp/journal/v10/n9/full/4001682a.html. 
  5. ^ a b メマンチン塩酸塩 国際共通化資料(CTD)神経細胞保護作用” (pdf). www.pmda.go.jp. 第一三共株式会社. 2016年8月3日閲覧。
  6. ^ Ilyin VI, Whittemore ER, Guastella J, Weber E, Woodward RM. (1996). “Subtype-selective inhibition of N-methyl-D-aspartate receptors by haloperidol.”. en:Molecular Pharmacology. 50 (6): 1541-50. PMID 8967976. http://molpharm.aspetjournals.org/cgi/pmidlookup?view=long&pmid=8967976. 
  7. ^ a b c Hama R, Bennett CL. (2016-6-30). “The mechanisms of sudden-onset type adverse reactions to oseltamivir.”. en:Acta Neurologica Scandinavica.. doi:10.1111/ane.12629. PMID 27364959. http://onlinelibrary.wiley.com/doi/10.1111/ane.12629/abstract. 
  8. ^ a b c Hama R. (2016-9). “The mechanisms of delayed onset type adverse reactions to oseltamivir.”. Journal of Infectious Diseases. 48 (9): 651-60. doi:10.1080/23744235.2016.1189592. PMID 27251370. http://onlinelibrary.wiley.com/doi/10.1111/ane.12629/abstract. 
  9. ^ a b Hirota K, Lambert DG. (1996-10). “Ketamine: Its mechanism(s) of action and unusual clinical uses.”. en:British Journal of Anaesthesia. 77 (4): 441-4. doi:10.1093/bja/77.4.441. PMID 8942324. http://bja.oxfordjournals.org/content/77/4/441.long. 
  10. ^ Boyer Edward, Burns Jarrett. (2013). “Antitussives and substance abuse.”. en:Substance Abuse and Rehabilitation. 4: 75-82. doi:10.2147/SAR.S36761. PMC 3931656. PMID 24648790. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931656/. 

関連

外部リンク

セリンラセミ化酵素 - 脳科学辞典 上位中枢神経での補因子とされるD-セリンの合成酵素に関する解説。