| この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "二乗平均平方根" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2023年1月) |
二乗平均平方根(にじょうへいきんへいほうこん、英: root mean square、RMS)とは、データや確率変数を二乗した値の算術平均の平方根である。結果として単位が元の統計値・確率変数と同じという点が特徴である。また、絶対値の平均よりも計算が積和演算であるため高速化が容易であることが挙げられる。
変量 x のデータ xi (i = 1, 2, …, n) に対して、x の二乗平均平方根 RMS(x) は次の式で定義される:
![{\displaystyle \operatorname {RMS} [x]={\sqrt {{\frac {1}{n}}\textstyle \sum \limits _{i=1}^{n}{x_{i}}^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1b0adfb48482e76c707790de2f2f64bf025e39d6)
つまり、xi2 の算術平均の平方根が x の二乗平均平方根 RMS[x] となる。
例えば、データ 1, 1, 2, 3, 5 の二乗平均平方根は次のようになる。
//
統計値の二乗を取ることで、その量の大きさの平均値を二乗平均平方根から概算することができる。また、光の強度は電磁場の二乗としてしばしば定義されるため、その平均強度は二乗平均平方根の形を取る。時間的に変化する信号の大きさを評価する目的で、物理学や電気工学などの分野で二乗平均平方根が用いられる。
二乗平均平方根は、一般化平均において指数パラメータを 2 としたものであるとも言える。
大きさ n のデータ x1, x2, …, xn に対して二乗平均平方根は
![{\displaystyle \operatorname {RMS} [x]={\sqrt {{\frac {1}{n}}\textstyle \sum \limits _{i=1}^{n}{x_{i}}^{2}}}={\sqrt {\frac {{x_{1}}^{2}+{x_{2}}^{2}+\cdots +{x_{n}}^{2}}{n}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/daf6db84716eff19fe69846c31181d0bd14fd2e1)
と定義される。
充分小さな Δx′ に対して x ∈ [x', x + Δx′] となる確率を f(x)Δx′ としたとき、x の二乗平均平方根 RMS[x] は
![{\displaystyle \operatorname {RMS} [x]={\sqrt {\int _{-\infty }^{\infty }x'^{2}f(x')dx'}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/be3f2098f585373feda53d65bbfcaccef42b37e9)
と定義される。ここで関数 f(x') は確率密度関数と呼ばれる。
連続関数 x(t) の区間 t ∈ [t1, t2] (t1 < t2) については媒介変数の積分を用いて、
![{\displaystyle \operatorname {RMS} [x(t)]={\sqrt {{\frac {1}{t_{2}-t_{1}}}\int _{t_{1}}^{t_{2}}(x(t))^{2}\,dt}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/caf5ae25621b343deb92f66edb29d98e95999cef)
と定義される。
計算例[編集]
周期関数については通常、積分区間を周期の整数倍に一致させて求める。
たとえば x(t) = sin(ωt) については、周期を τ = 2π/ω で表し、
![{\displaystyle \operatorname {RMS} [\sin \omega t]={\sqrt {{\frac {1}{\tau }}\int _{0}^{\tau }\sin ^{2}\omega t\,dt}}={\sqrt {{\frac {1}{\tau }}\int _{0}^{\tau }{\frac {1-\cos 2\omega t}{2}}\,dt}}={\frac {1}{\sqrt {2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/50dbe5012176ae61e335278c85a4d5d4ba0ea494)
のようにする。同様に三角関数の和について、適当な周期を τ として、
![{\displaystyle {\begin{aligned}\operatorname {RMS} \left[\sum _{n}c_{n}\sin \omega _{n}t\right]&={\sqrt {{\frac {1}{\tau }}\int _{0}^{\tau }\left(\sum _{n}c_{n}\sin \omega _{n}t\right)^{2}\,dt}}\\&={\sqrt {{\frac {1}{\tau }}\sum _{m,n}\int _{0}^{\tau }c_{m}c_{n}\sin(\omega _{m}t)\sin(\omega _{n}t)\,dt}}\\&={\sqrt {{\frac {1}{\tau }}\sum _{m,n}\int _{0}^{\tau }c_{m}c_{n}{\frac {\cos(\omega _{m}t-\omega _{n}t)-\cos(\omega _{m}t+\omega _{n}t)}{2}}\,dt}}\\&={\sqrt {{\frac {1}{2}}\sum _{n}(c_{n})^{2}}}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/766660aad36ae2a668b526c32ddd123dc6c66b06)
となる。非対角成分は積分すると 0 になる(直交)ので、対角成分の積分だけが残る。
平均値および標準偏差との関係[編集]
変量 x に対して期待値 ⟨x⟩ が定まるなら、その量の期待値からの偏差 x − ⟨x⟩ の二乗平均平方根 RMS[x − ⟨x⟩] を与えることができる。この偏差の二乗平均平方根は x の標準偏差 σx に等しい。
![{\displaystyle \sigma _{x}={\sqrt {{\frac {1}{n}}\textstyle \sum \limits _{i=1}^{n}\left(x_{i}-\langle x\rangle \right)^{2}}}=\operatorname {RMS} [x-\langle x\rangle ]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fe5e850dc7a60856715eee5b9a7947de67948f72)
また、二乗偏差 (x − ⟨x⟩)2 を展開すれば、偏差の二乗平均平方根は次のように書き直せる。
![{\displaystyle {\begin{aligned}\operatorname {RMS} [x-\langle x\rangle ]&={\sqrt {{\frac {1}{n}}\textstyle \sum \limits _{i=1}^{n}\left(x_{i}-\langle x\rangle \right)^{2}}}\\&={\sqrt {{\frac {1}{n}}\textstyle \sum \limits _{i=1}^{n}{x_{i}}^{2}-2\langle x\rangle {\dfrac {1}{n}}\sum \limits _{i=1}^{n}x_{i}+\langle x\rangle ^{2}}}\\&={\sqrt {\left(\operatorname {RMS} [x]\right)^{2}-\langle x\rangle ^{2}}}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d4bd8a63f2f621f62b90cdcf8d27c04cb1f1e324)
ただし最後に期待値 ⟨x⟩ が xi の平均値 x に等しいことを使った。

このとき次の関係が成り立つ。
![{\displaystyle \left(\operatorname {RMS} [x]\right)^{2}={\sigma _{x}}^{2}+\langle x\rangle ^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6ab97232b249244b1866a6ec2856d3654cd1ce44)
期待値 ⟨x⟩ が xi の算術平均 x に等しいことは一般には成り立たない。たとえば xi を x の各回の測定値だとすれば、その標本平均 x は期待値 ⟨x⟩ からある精度で外れた値になる。実験では真の値は分からないので、期待値 ⟨x⟩ の代わりに測定値の標本平均 x が用いられ、標準偏差は測定値の平均値からの不偏分散の平方根によって推定される。不偏でない単純な標本標準偏差は二乗平均平方根の形で表されるが、不偏標本標準偏差 ux はそれとは異なる。
![{\displaystyle \operatorname {RMS} [x-{\bar {x}}]={\sqrt {{\frac {1}{n}}\textstyle \sum \limits _{i=1}^{n}(x-{\bar {x}})^{2}}}\neq {\sqrt {{\frac {1}{n-1}}\textstyle \sum \limits _{i=1}^{n}(x-{\bar {x}})^{2}}}=u_{x}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ad51eb5a378dff3899c2cedfc7f166a948686717)
単純な標本標準偏差では分散の重心が期待値ではなく標本平均になっているため、これは真の値からの誤差を評価していない。
これらがほぼ等価であると言えるのは、測定精度に比べて充分多くの回数測定を行った場合だけである。
関連項目[編集]