平方度

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索

平方度(へいほうど)は、星座などの大きさを表すために用いられる単位。1 平方度の大きさは、一辺を 1 度とする正方形の面積。正確には面積の単位ではなく、ステラジアンと同じく立体角を表す単位である。

天球の総面積は 41 252.96 平方度である。計算方法は以下の通り。

まず半径に相当する長さを"度"で表すことを考える。円周の長さが360度であるから、


\begin{array}{rcl}
S & = & 2\pi r =360 \\
r & = & {180 \over \pi}
\end{array}

この半径rを用いて球の表面積を表すと、


\begin{array}{rcl}
A &=& 4 \pi r^2 \\
\ &=& 2r (2 \pi r) \\
\ &=& 2 \cdot 360 \cdot {180 \over \pi} \\
\ & = & 41\ 252.96
\end{array}

半頂角 \theta の円錐の立体角(平方度)は、

360 \cdot {180 \over \pi} \left(1-\cos\theta\right) = 20\ 626.48\left(1-\cos\theta\right)

緯度\delta_1から\delta_2(度)、経度\lambda_1から\lambda_2(度)で囲まれた範囲の立体角(平方度)は、

{180 \over \pi} \left(\sin\delta_2-\sin\delta_1\right)\left(\lambda_2-\lambda_1\right)

最も大きな面積を持つ星座はうみへび座で、約 1303 平方度である。これは、全天の約 1/32 を占める。かつて存在したアルゴ座(巨大な星座ゆえにラカーユによって分割された)は約 1888平方度もの面積があった。