# 逆双曲線関数

## 対数表現

{\displaystyle {\begin{aligned}\operatorname {arsinh} \,z&=\ln(z+{\sqrt {z^{2}+1}}\,)\\[2.5ex]\operatorname {arcosh} \,z&=\ln(z+{\sqrt {z+1}}{\sqrt {z-1}}\,)\\[1.5ex]\operatorname {artanh} \,z&={\tfrac {1}{2}}\ln \left({\frac {1+z}{1-z}}\right)\\\operatorname {arcoth} \,z&={\tfrac {1}{2}}\ln \left({\frac {z+1}{z-1}}\right)\\\operatorname {arcsch} \,z&=\ln \left({\frac {1}{z}}+{\sqrt {{\frac {1}{z^{2}}}+1}}\,\right)\\\operatorname {arsech} \,z&=\ln \left({\frac {1}{z}}+{\sqrt {{\frac {1}{z}}+1}}\,{\sqrt {{\frac {1}{z}}-1}}\,\right)\end{aligned}}}

${\displaystyle \operatorname {arsinh} (z)}$
${\displaystyle \operatorname {arcosh} (z)}$
${\displaystyle \operatorname {artanh} (z)}$
${\displaystyle \operatorname {arcoth} (z)}$
${\displaystyle \operatorname {arsech} (z)}$
${\displaystyle \operatorname {arcsch} (z)}$
z平面（複素数平面）における逆双曲線関数：平面における各点の色はその点における関数の複素数を表す。

## 級数展開

{\displaystyle {\begin{aligned}\operatorname {arsinh} \,x&=x-\left({\frac {1}{2}}\right){\frac {x^{3}}{3}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {x^{5}}{5}}-\left({\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6}}\right){\frac {x^{7}}{7}}+\cdots \\&=\sum _{n=0}^{\infty }\left({\frac {(-1)^{n}(2n)!}{2^{2n}(n!)^{2}}}\right){\frac {x^{2n+1}}{(2n+1)}},\qquad \left|x\right|<1\end{aligned}}}
{\displaystyle {\begin{aligned}\operatorname {arcosh} \,x&=\ln 2x-\left(\left({\frac {1}{2}}\right){\frac {x^{-2}}{2}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {x^{-4}}{4}}+\left({\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6}}\right){\frac {x^{-6}}{6}}+\cdots \right)\\&=\ln 2x-\sum _{n=1}^{\infty }\left({\frac {(2n)!}{2^{2n}(n!)^{2}}}\right){\frac {x^{-2n}}{(2n)}},\qquad x>1\end{aligned}}}
{\displaystyle {\begin{aligned}\operatorname {artanh} \,x&=x+{\frac {x^{3}}{3}}+{\frac {x^{5}}{5}}+{\frac {x^{7}}{7}}+\cdots \\&=\sum _{n=0}^{\infty }{\frac {x^{2n+1}}{(2n+1)}},\qquad \left|x\right|<1\end{aligned}}}
{\displaystyle {\begin{aligned}\operatorname {arcsch} \,x=\operatorname {arsinh} {\frac {1}{x}}&=x^{-1}-\left({\frac {1}{2}}\right){\frac {x^{-3}}{3}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {x^{-5}}{5}}-\left({\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6}}\right){\frac {x^{-7}}{7}}+\cdots \\&=\sum _{n=0}^{\infty }\left({\frac {(-1)^{n}(2n)!}{2^{2n}(n!)^{2}}}\right){\frac {x^{-(2n+1)}}{(2n+1)}},\qquad \left|x\right|>1\end{aligned}}}
{\displaystyle {\begin{aligned}\operatorname {arsech} \,x=\operatorname {arcosh} {\frac {1}{x}}&=\ln {\frac {2}{x}}-\left(\left({\frac {1}{2}}\right){\frac {x^{2}}{2}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {x^{4}}{4}}+\left({\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6}}\right){\frac {x^{6}}{6}}+\cdots \right)\\&=\ln {\frac {2}{x}}-\sum _{n=1}^{\infty }\left({\frac {(2n)!}{2^{2n}(n!)^{2}}}\right){\frac {x^{2n}}{2n}},\qquad 0
{\displaystyle {\begin{aligned}\operatorname {arcoth} \,x=\operatorname {artanh} {\frac {1}{x}}&=x^{-1}+{\frac {x^{-3}}{3}}+{\frac {x^{-5}}{5}}+{\frac {x^{-7}}{7}}+\cdots \\&=\sum _{n=0}^{\infty }{\frac {x^{-(2n+1)}}{(2n+1)}},\qquad \left|x\right|>1\end{aligned}}}

またオイラーによるarctanの展開[4]の類似も成り立つ。

${\displaystyle \operatorname {artanh} \,x=\sum _{n=0}^{\infty }{\frac {2^{2n}(n!)^{2}}{(2n+1)!}}{\frac {(-1)^{n}x^{2n+1}}{(1-x^{2})^{n+1}}},\qquad \left|x\right|<{\frac {1}{\sqrt {2}}}}$
${\displaystyle (\operatorname {arsinh} \,x)^{2}=\sum _{n=0}^{\infty }{\frac {2^{2n+1}(n!)^{2}}{(2n+2)!}}(-1)^{n}x^{2n+2},\qquad \left|x\right|<1}$

arsinh x に対する漸近展開は次の式で与えられる。

${\displaystyle \operatorname {arsinh} \,x=\ln 2x+\sum \limits _{n=1}^{\infty }{\left({-1}\right)^{n-1}{\frac {\left({2n-1}\right)!!}{2n\left({2n}\right)!!}}}{\frac {1}{x^{2n}}}}$

## 導関数

{\displaystyle {\begin{aligned}{\frac {d}{dx}}\operatorname {arsinh} \,x&{}={\frac {1}{\sqrt {1+x^{2}}}}\\{\frac {d}{dx}}\operatorname {arcosh} \,x&{}={\frac {1}{\sqrt {x^{2}-1}}}\\{\frac {d}{dx}}\operatorname {artanh} \,x&{}={\frac {1}{1-x^{2}}}\\{\frac {d}{dx}}\operatorname {arcoth} \,x&{}={\frac {1}{1-x^{2}}}\\{\frac {d}{dx}}\operatorname {arsech} \,x&{}={\frac {-1}{x(x+1)\,{\sqrt {\frac {1-x}{1+x}}}}}\\{\frac {d}{dx}}\operatorname {arcsch} \,x&{}={\frac {-1}{x^{2}\,{\sqrt {1+{\frac {1}{x^{2}}}}}}}\\\end{aligned}}}

{\displaystyle {\begin{aligned}{\frac {d}{dx}}\operatorname {arsech} \,x&{}={\frac {\mp 1}{x\,{\sqrt {1-x^{2}}}}};\qquad \Re \{x\}\gtrless 0\\{\frac {d}{dx}}\operatorname {arcsch} \,x&{}={\frac {\mp 1}{x\,{\sqrt {1+x^{2}}}}};\qquad \Re \{x\}\gtrless 0\end{aligned}}}

${\displaystyle {\frac {d\,\operatorname {arsinh} \,x}{dx}}={\frac {d\theta }{d\sinh \theta }}={\frac {1}{\cosh \theta }}={\frac {1}{\sqrt {1+\sinh ^{2}\theta }}}={\frac {1}{\sqrt {1+x^{2}}}}}$

## 双曲線関数と逆双曲線関数の合成

{\displaystyle {\begin{aligned}\sinh(\operatorname {arcosh} x)&={\sqrt {x^{2}-1}}&{\text{for }}|x|>1\\\sinh(\operatorname {artanh} x)&={\frac {x}{\sqrt {1-x^{2}}}}&{\text{for }}|x|<1\\\cosh(\operatorname {arsinh} x)&={\sqrt {1+x^{2}}}\\\cosh(\operatorname {artanh} x)&={\frac {1}{\sqrt {1-x^{2}}}}&{\text{for }}|x|<1\\\tanh(\operatorname {arsinh} x)&={\frac {x}{\sqrt {1+x^{2}}}}\\\tanh(\operatorname {arcosh} x)&={\frac {\sqrt {x^{2}-1}}{x}}&{\text{for }}|x|>1\end{aligned}}}

## 加法公式

{\displaystyle {\begin{aligned}\operatorname {arsinh} u\pm \operatorname {arsinh} v&=\operatorname {arsinh} \left(u{\sqrt {1+v^{2}}}\pm v{\sqrt {1+u^{2}}}\right)\\\operatorname {arcosh} u\pm \operatorname {arcosh} v&=\operatorname {arcosh} \left(uv\pm {\sqrt {\left(u^{2}-1\right)\left(v^{2}-1\right)}}\right)\\\operatorname {artanh} u\pm \operatorname {artanh} v&=\operatorname {artanh} \left({\frac {u\pm v}{1\pm uv}}\right)\\\operatorname {arsinh} u+\operatorname {arcosh} v&=\operatorname {arsinh} \left(uv+{\sqrt {\left(1+u^{2}\right)\left(v^{2}-1\right)}}\right)\\&=\operatorname {arcosh} \left(v{\sqrt {1+u^{2}}}+u{\sqrt {v^{2}-1}}\right)\end{aligned}}}

## 逆双曲線関数の恒等式

{\displaystyle {\begin{aligned}\operatorname {arcosh} (2x^{2}-1)&=2\operatorname {arcosh} (x)&{\text{ for }}x\geq 1\\\operatorname {arcosh} (8x^{4}-8x^{2}+1)&=4\operatorname {arcosh} (x)&{\text{ for }}x\geq 1\\\operatorname {arcosh} (2x^{2}+1)&=2\operatorname {arsinh} (x)&{\text{ for }}x\geq 0\\\operatorname {arcosh} (8x^{4}+8x^{2}+1)&=4\operatorname {arsinh} (x)&{\text{ for }}x\geq 0\end{aligned}}}

## 脚注

1. ^ Jan Gullberg, Mathematics: From the Birth of NumbersNew York: W. W. Norton & Company, 1997）, ISBN 0-393-04002-X, p. 539には以下のような記述がある。

arcsinh x, arccosh x などの似て非なる表記法は、厳しく糾弾されなければならない。実際これらの関数はarcとは何らの関係もなく、areaと関係するものであり、それはラテン語で書かれた真の名前が証明している。

arsinh     = ラテン語: area sinus hyperbolicus arcosh     = ラテン語: area cosinus hyperbolicus

2. ^ Eberhard Zeidler, Wolfgang Hackbusch and Hans Rudolf Schwarz, Oxford Users' Guide to Mathematics (Bruce Hunt英訳, Oxford: Oxford University Press, 2004), ISBN 0-19-850763-1, Section 0.2.13: "The inverse hyperbolic functions", p. 68には以下のような記述がある。
 「 逆双曲線関数のラテン語名は、area sinus hyperbolicus, area cosinus hyperbolicus, area tangens hyperbolicusそしてarea cotangens hyperbolicus (x). ...である。 」
上記の引用では、arsinh, arcosh, artanh, arcothをそれぞれの逆双曲線関数の表記法として採用している。

3. ^ Ilja N. Bronshtein, Konstantin A. Semendyayev, Gerhard Musiol and Heiner Muehlig, Handbook of MathematicsBerlin: Springer-Verlag, 5th ed., 2007）, ISBN 3-540-72121-5, doi:10.1007/978-3-540-72122-2, Section 2.10: "Area Functions", p. 91には以下のような記述がある。

面積関数は双曲線関数の逆関数すなわち逆双曲線関数 である。関数sinh x, tanh x およびcoth x は狭義単調関数であるので、何らの制限事項も設けることなく各々が逆関数を持つ。関数cosh x の定義域は2つの単調な（無限）区間に分けられるので、二つの逆関数を考えることができる。また名前にある 面積 と言う語は、この関数の幾何学的な定義が特定の双曲的扇形の面積であるという事実を意味している。...

4. ^ Chien-Lih, Hwang (2005). “89.67 An Elementary Derivation of Euler's Series for the Arctangent Function”. The Mathematical Gazette 89 (516): 469–470. ISSN 0025-5572.