トレミーの定理

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動先: 案内検索

トレミーの定理(トレミーのていり)とは、に内接する四角形 ABCD において、の長さに関する等式

が成り立つという幾何学定理。トレミーとは古代ギリシア天文学者クラウディオス・プトレマイオスのことであり、それゆえ本定理はプトレマイオスの定理とも呼ばれる。

トレミーの定理.jpg

証明[編集]

計算の便宜をはかり、a = AD, b = AB, c = BC, d = DC とおくことにする。また、∠A = ∠DAB, ∠B = ∠ABC, ∠C = ∠BCD, ∠D = ∠CDA のこととする。

余弦定理および内接四角形の性質より、

が成り立つ。ここから cos A を消去して、

を得る。また AC について同様にして

となるから、2 式を掛けて

を得る。これを整理すれば、

となる。すなわち、

が示された。