コンテンツにスキップ

「球函数に対するプランシュレルの定理」の版間の差分

出典: フリー百科事典『ウィキペディア(Wikipedia)』
削除された内容 追加された内容
en:Plancherel theorem for spherical functions 18:15, 11 May 2012‎ の一部訳
(相違点なし)

2012年9月5日 (水) 12:53時点における版

数学における球函数に対するプランシュレルの定理(プランシュレンのていり、: Plancherel theorem for spherical functions)は半単純リー群表現論における重要な結果で、最終形はハリッシュ=チャンドラによる。この定理は、古典調和解析]に属する実数の加法群の表現論におけるプランシュレルの公式およびフーリエ変転公式の、非可換調和解析における自然な一般化であり、微分方程式論とも同様に近しい相互関係を持つ。

「球函数に対するプランシュレルの定理」は、半単純リー群に対する一般のプランシュレルの定理(これもハリッシュ=チャンドラが示した)の、帯球函数に対する特別の場合である。プランシュレルの定理は、対応付けられた対称空間 X 上のラプラス作用素に対する球対称函数 (radial function) の固有函数展開を与えるものであり、また L2(X) 上の正則表現の、既約表現への直積分分解をも与えるものである。双曲空間の場合には、これらの展開はメーラー、ワイルフォックによる既知の結果として知られていた。

主要な参考文献として、網羅的な教科書 Helgason (1984) にこの主題に関する話題がほとんど全て載っている。

歴史

単模局所コンパクト群 G に対する抽象的なプランシュレルの公式の最初の版は、ジーゲルとモートナーによる[1]。同じころ、ハリッシュ=チャンドラ[2][3]、ゲルファントとナイマーク[4][5]は、実二次特殊線型群 SL(2 R) および複素半単純リー群、特にローレンツ群に対する明示公式を導いた。またモートナーは、極大コンパクト部分群 K に対応する「位相的」対称空間 G/K に対する、より単純な抽象公式を導いている。ゴドマンはより具体的で申し分のない形で、G/K 上の球函数のクラスである正定値帯球函数に対する公式を与えている。G半単純リー群のとき、それら球函数 φλ は、ユークリッド空間有限鏡映群の作用による商に値をとる径数 λ で添字付けられるから、問題はこの径数付けのもとでプランシュレル測度を明示的に決定することが中心課題となる。常微分方程式のスペクトル論からワイルの考え方を一般化して、ハリッシュチャンドラ[6][7]は、 彼に名高い c-函数 c(λ) を球函数 φλ の漸近挙動を記述するために導入して、c(λ)−2dλ をプランシュレル測度として提唱した。彼が示したのは、公式の G が複素または実階数 1 である特別の場合であり、これは特に G/K双曲空間である場合をカバーしている。一般の場合については、c-函数およびいわゆる球フーリエ変換の性質に関する二つの予想に還元される。c-函数に対する明示公式は、後にバーニュ=マーシーが古典的半単純リー群の広範なクラスに対するものを得ている。それからこれらの公式に促されて Gindikin と Karpelevič は、c-函数に対する蹟公式を導出した[8]。これは階数 1 の場合にはハリッシュ=チャンドラの公式の計算に帰着される。これらの仕事は、最終的にハリッシュ=チャンドラによってまとめられ、1966年に球函数に対するプランシュレルの定理の証明が完成した[9]

多くの特別の場合、例えば複素半単純群やローレンツ群において、その理論を直接的に推し進める単純な方法が存在する。これらの群のある種の部分群は、よく知られたアダマールの「降下法」を一般化した手法によって扱うことができる。特に Flensted-Jensen (1978) は、実半単純群に対する球変換の性質をその複素化から還元する一般手法を与えた。

球変換に対する主要な応用および動機の一つはゼルバーグ蹟公式であった。古典的なポワソン和公式は、ベクトル群上のフーリエ反転公式を余コンパクト格子上の総和に結び付けるが、この和公式の類似物としてのセルバーグ蹟公式は、ベクトル群を G/K で、フーリエ変換を球変換で、格子を余コンパクト(あるいは補有限)離散部分群で、それぞれ取り替えたものである。セルバーグのオリジナルの論文 (Selberg 1956) は球変換を暗黙の裡に用いており、球変換を前面に持ち出すのは Godement (1957) で、これには特にセルバーグのスケッチに沿ってSL(2,R) に対する初等的な取り扱いが示されている。

球函数

G半単純リー群KG極大コンパクト部分群とする。G 上のコンパクト台付き両側 K-不変函数からなるヘッケ環 Cc(K\G/K)ヒルベルト空間 H=L2(G / K) に畳み込みで作用する。GK対称空間ゆえ、この ∗-代数は可換である。その像の、作用素ノルムに関する閉包は、単位的でない可換 C-環 であり、ゲルファント同型によってそのスペクトル X 上の連続函数で無限遠で消えているものの全体と同一することができる[10]。このスペクトルの点は、 から C への連続 ∗-準同型、即ち 指標で与えられる。

S′ で H 上の作用素の集合 S交換団を表すならば、H 上の G正則表現の交換団と同一視することができる。そうして、H における K-不変ベクトル全体の成す部分空間 H0 を変えない。さらに言えば、それが H0 上で生成する可換フォンノイマン環は極大可換部分環である。スペクトル論により、局所コンパクト空間 X 上の測度 μ と、H0L2(X, μ) の間のユニタリ変換 U に属する作用素の全体を対応する乗算作用素の全体の上へ写すものとが、本質的にただ一つ[11]存在する。

この変換 U球フーリエ変換あるいは単に球変換と呼び、μ をプランシュレル測度と呼ぶ。ヒルベルト空間 H0G 上の両側 K-不変自乗可積分函数全体の成す空間 L2(K\G/K) と同一視することができる。

の指標 χλ(即ち X の点)は、Cc(K\G/K) に属する f に対する等式

を通じて G 上の正定値球函数 φλ によって記述することができる。ただし、π(f) は における畳み込み作用素であり、積分は Gハール測度に関するものである。

G 上の球函数 φλハリッシュ=チャンドラの公式

で与えられる。この式に関して:

  • 積分は K 上のハール測度に関するものである。
  • λ は A* = Hom(A,T) の元である。ただし AG岩澤分解 G = KAN における可換ベクトル部分群 A とする。
  • λ′ は以下のようにして G 上で定義される。まず λ を、A の上への群準同型を用いて可解部分群 AN指標へ延長し、
    と定める。ただし、ΔANANモジュラスとする。
  • 相異なる二つの指標 λ1, λ2 が同じ球函数を定める必要十分条件は、λ1 = λ2·s となることである。ただし sAワイル群 W = NK(A)/CK(A) の元とする。この剰余群は AK における正規化群を同じく AK における中心化群で割ったもので、有限鏡映群を成す。

ここから、

  • X は商空間 A/W' と同一視することができる」

ことがわかる。

球主系列

球函数 φλG球主系列行列要素と同一視することができる。MK における A中心化群のとき、これは MANA の上への準同型と指標 λ との合成によって与えられる B = MAN の指標から誘導される G のユニタリ表現 πλ として定義される。この誘導表現は、G 上の函数 f

を満たすものに対し、

で作用が定義されるものである。ただし、

とする。このような函数 f は L2(K / M) に属する函数と同一視され、指標は

となる。

Kostant (1969) の示すところによれば、球主系列表現は既約で、そのような二つの表現 πλ, πμ がユニタリ同値となることと、A のワイル群の適当な元 σ に対して μ = σ(λ) となることとが同値になる。

例: SL(2,C)

複素特殊線型群 G = SL(2,C) は四元的上半平面

メビウス変換として推移的に作用する。即ち、二次の複素正方行列が

として作用する。一点 j の固定部分群は極大コンパクト部分群 K = SU(2) であり、故に が成り立つ。この上半平面には G-不変リーマン計量

が入り、対応する体積要素 dVラプラス作用素 Δ が

と定まる。上辺平面 の各点は、SU(2) の元 k を用いて k(etj) と書くことができて、t は符号の違いを除いて決まる。またこのラプラス作用素 Δ は、SU(2)-不変函数の上で

なる形に書くことができて、実数値助変数 t の函数と見做すことができる。SU(2)-不変函数の積分は

で与えられる。自乗可積分 SU(2)-不変函数の空間と L2(R) とを、ユニタリ変換 Uf(t) = f(t) sinh t で同一視すると、Δ は作用素

に写される。ここで R に対するプランシュレルの定理およびフーリエ反転公式を用いれば、任意の SU(2)-不変函数 f は球函数

を使った球変換および球反転公式

によって表すことができる。

fiCc(G/K) として および と置き、i での値を評価することにより、プランシュレルの公式

が導かれる。これを両側不変函数に対して用いれば、

球函数に対するプランシュレルの定理
写像
はユニタリで、f ∈ L1(K\G/K) による畳み込み作用素を による乗算作用素へ写す。

球函数 Φλ はラプラス作用素

固有函数であり、また R 上のシュヴァルツ函数はハリッシュ=チャンドラ・シュヴァルツ函数の空間

に属する函数 f の球変換として表せられる。ペイリー・ウィーナーの定理により、コンパクト台付き滑らかな SU(2)-不変函数の球変換はちょうど、指数的増加条件

を満足する C 上の正則函数の制限であるような R 上の函数である。G 上の函数として Φλ は L2(C) において定義される球主系列の行列要素になっている。ただし、C の境界と同一視するものとする。表現は等式

で与えられる。また函数

SU(2) で固定され、

が成り立つ。この表現 πλ は既約であり、これとユニタリ同値なものは λ の符号を変えたものに限る。

で与えられる から L2([0,∞) × C)(最初の因子には測度 λ2dλ を入れる)の上への写像 W はユニタリであり、かつ の球主系列への直積分分解を与える。

例: SL(2,R)

実特殊線型群 G = SL(2,R) はポワンカレ上半平面

メビウス変換として推移的に作用する。即ち実行列は

なる変換を定める。一点 i の安定化部分群は極大コンパクト部分群 K = SO(2) であり、  が成立する。上半平面には G-不変リーマン計量

が入り、対応する面素 dAラプラス作用素 Δ がそれぞれ

で与えられる。 の各点は kSO(2) を用いて k(eti) の形に書くことができて、t は符号の違いを除いて決まる。ラプラス作用素は SO(2)-不変函数の上で

の形に書くことができて、実径数 t の函数と見ることができる。SO(2)-不変函数の積分は

で与えられる。この常微分方程式に対して、対応する固有函数展開を導出する方法はいくつかあるが、例えば:

  1. 古典的な常微分方程式のスペクトル論超幾何方程式に適用する (Mehler, Weyl, Fock);
  2. アダマールの降下法の一種で、二次元の双曲空間を、三次元の双曲空間の SL(2,C) の一径数部分群による自由作用で割った商として実現する;
  3. セルバーグとゴドマンに従って、アーベルの積分方程式;
  4. 軌道積分 (Harish-Chandra, Gelfand & Naimark).

二つ目と三つ目の手法は後述する。降下法については二種類の異なるものを記述する。アダマールによる古典的な降下法は、双曲空間上の熱方程式[12]および波動方程式[13]の取り扱いに適している。また、フレンステッド-イェンゼンの降下法は双曲面 (hyperboloid) 上のものである。

アダマールの降下法

If f(x,r) is a function on and

then

where Δn is the Laplacian on .

Since the action of SL(2,C) commutes with Δ3, the operator M0 on S0(2)-invariant functions obtained by averaging M1f by the action of SU(2) also satisfies

The adjoint operator M1* defined by

satisfies

The adjoint M0*, defined by averaging M*f over SO(2), satisfies

for SU(2)-invariant functions F and SO(2)-invariant functions f. It follows that

The function

is SO(2)-invariant and satisfies

On the other hand

since the integral can be computed by integrating around the rectangular indented contour with vertices at ±R and ±R + πi. Thus the eigenfunction

satisfies the normalisation condition φλ(i) = 1. There can only be one such solution either because the Wronskian of the ordinary differential equation must vanish or by expanding as a power series in sinh r.[14] It follows that

Similarly it follows that

If the spherical transform of an SO(2)-invariant function on is defined by

then

Taking f=M1*F, the SL(2,C) inversion formula for F immediately yields

the spherical inversion formula for SO(2)-invariant functions on .

As for SL(2,C), this immediately implies the Plancherel formula for fi in Cc(SL(2,R) / SO(2)):

The spherical function φλ is an eigenfunction of the Laplacian:

Schwartz functions on R are the spherical transforms of functions f belonging to the Harish-Chandra Schwartz space

The spherical transforms of smooth SO(2)-invariant functions of compact support are precisely functions on R which are restrictions of holomorphic functions on C satisfying an exponential growth condition

Both these results can be deduced by descent from the corresponding results for SL(2,C),[15] by verifying directly that the spherical transform satisfies the given growth conditions[16][17] and then using the relation .

As a function on G, φλ is the matrix coefficient of the spherical principal series defined on L2(R), where R is identified with the boundary of . The representation is given by the formula

The function

is fixed by S0(2) and

The representations πλ are irreducible and unitarily equivalent only when the sign of λ is changed. The map W of onto L2([0,∞) xR), with measure

on the first factor, is given by the formula

is unitary and gives the decomposition of as a direct integral of the spherical principal series.

フレンステッド-イェンゼンの降下法

Hadamard's method of descent relied on functions invariant under the action of 1-parameter subgroup of translations in the y parameter in . Flensted–Jensen's method uses the centraliser of SO(2) in SL(2,C) which splits as a direct product of SO(2) and the 1-parameter subgroup K1 of matrices

The symmetric space SL(2,C)/SU(2) can be identified with the space H3 of positive 2×2 matrices A with determinant 1

with the group action given by

Thus

So on the hyperboloid , gt only changes the coordinates y and a. Similarly the action of SO(2) acts by rotation on the coordinates (b,x) leaving a and y unchanged. The space H2 of real-valued positive matrices A with y = 0 can be identified with the orbit of the identity matrix under SL(2,R). Taking coordinates (b,x,y) in H3 and (b,x) on H2 the volume and area elements are given by

where r2 equals b2 + x2 + y2 or b2 + x2, so that r is related to hyperbolic distance from the origin by .

The Laplacian operators are given by the formula

where

and

For an SU(2)-invariant function F on H3 and an SO(2)-invariant function on H2, regarded as functions of r or t,

If f(b,x) is a function on H2, Ef is defined by

Thus

If f is SO(2)-invariant, then, regarding f as a function of r or t,

On the other hand

Thus, setting Sf(t) = f(2t),

leading to the fundamental descent relation of Flensted-Jensen for M0 = ES:

The same relation holds with M0 by M, where Mf is obtained by averaging M0f over SU(2).

The extension Ef is constant in the y variable and therefore invariant under the transformations gs. On the other hand for F a suitable function on H3, the function QF defined by

is independent of the y variable. A straightforward change of variables shows that

Since K1 commutes with SO(2), QF is SO(2)--invariant if F is, in particular if F is SU(2)-invariant. In this case QF is a function of r or t, so that M*F can be defined by

The integral formula above then yields

and hence, since for f SO(2)-invariant,

the following adjoint formula:

As a consequence

Thus, as in the case of Hadamard's method of descent.

with

and

It follows that

Taking f=M*F, the SL(2,C) inversion formula for F then immediately yields

アーベルの積分等式

The spherical function φλ is given by

so that

Thus

so that defining F by

the spherical transform can be written

The relation between F and f is classically inverted by the Abel integral equation:

In fact[18]

The relation between F and is inverted by the Fourier inversion formula:

Hence

This gives the spherical inversion for the point i. Now for fixed g in SL(2,R) define[19]

another rotation invariant function on with f1(i)=f(g(i)). On the other hand for biinvariant functions f,

so that

where w = g(i). Combining this with the above inversion formula for f1 yields the general spherical inversion formula:

そのほか特別の場合

任意の複素半単純リー群あるいは奇数 N に対するローレンツ群 SO0(N, 1) は通常のフーリエ変換に帰着して直接的に扱うことができる[15][20]。それ以外の実ローレンツ群は、フレンステッド-イェンゼンの降下法により、他の実階数 1 の半単純リー群と同様に演繹することができる[21]。フレンステッド-イェンゼンの降下法は、実半単純リー環が複素半単純リー環の正規実型である場合を扱う際にも適用できる[15]SL(N,  C) の正規実型でもある SL(N, R) に対する特別の場合は Jorgenson & Lang (2001) が詳しく扱っている。

Flensted-Jensen (1978) のやり方は、勝手な実階数を持つ実半単純リー群の広汎なクラスに対して適用できて、 上のプランシュレル測度の明示的な積公式を、後述するようなハリッシュ=チャンドラの c-函数による球函数 φλ の展開を用いることなしに導出することができる。 これは一般性という点では(ハリッシュ=チャンドラよりは)弱いけれども、このクラスの群に対するプランシュレルの定理へのより簡明な手法を与えてくれる。

複素半単純リー群の場合

G が複素半単純リー群で、それがコンパクト半単純リー群である極大コンパクト部分群 U複素化に一致するとする。G および U のリー環をそれぞれ および とすれば

が成り立つ。U極大トーラスT, そのリー環を とするとき、

と置けば、カルタン分解

が得られる。U の有限次元既約表現 πλ は適当な λ ∈ 添字付けられる[22]。対応する指標公式とワイルの次元公式から、明示的に

が与えられる。これらの公式は、もともと および の上で定義され、それをその複素化まで正則に拡張したものである。さらに言えば、

が成り立つ。ただし、Wワイル群 W = NU(T)/T で δ(eX) は の複素化へ正則に拡張した積公式(ワイルの分母公式)で与えられる。同様の積公式が λ に関する多項式である d(λ) にも存在する。

複素群 G 上で両側 U-不変函数 F の積分は、 として

で評価することができる。G の球函数は に属する λ でラベル付けられ、ハリッシュ=チャンドラ-ベレツィンの公式[23]

で与えられる。これは λ に対応する Gボレル部分群の指標から誘導される G の既約球主系列表現の行列要素である。このような表現は既約であり、かつ何れも L2(U / T) 上で実現することができる。

両側 U-不変函数 F の球変換は

で与えられ、球反転公式は

となる。ただし、ワイルの小部屋である。実はこの結果は 上のフーリエ反転公式から従う[24]。というのも、

だから フーリエ変換に他ならないからである。

注意すべきは、対角部分群 U に対して対称空間 G/Uコンパクト双対[25]としてコンパクト対称空間 U &rimes; UU を持つことである。後者の空間(これを U 自身と同一視することができる)に対する球函数は、 の内部に含まれる格子点で添字付けられた、正規化された指標 χλ/d(λ) で、A の役割を T が果たす。U 上の類函数 f の球変換は

で与えられ。今の場合、球反転公式は、T 上のフーリエ級数論から

となることがわかる。これらの公式と非コンパクト双対における同等の公式の間には明白な双対性が存在する[26]

実半単純リー群の場合

G0 を複素半単純リー群 G正規実型で、G のリー環上で共軛線型な対合 &sigmma; の不動点全体に一致するものとする。また τ を G0 のカルタン対合を G の対合へ拡張したもので、G のリー環上複素線型かつ、σ と可換となるように選ぶ。τσ の不動点全体の成す部分群は G のコンパクト実型 U of G であり、その G0 との交わりは極大コンパクト部分群 K0 になる。また τ の不動点部分群 KK0 の複素化である。G0 = K0P0 を対応する G0 のカルタン分解とし、AP0 の極大可換部分群とする。Flensted-Jensen (1978)

が成り立つことを示した。ここで A+ は、ワイルの小部屋の における閉包の指数写像による像である。さらに言えば

が成り立つ。

であるから、これにより K\G/UK0\G0/K0 および A+ の間に標準的な同一視が存在することが従う。従って G0 上の両側 K0-不変函数は、G 上の左 K-不変かつ右 U-不変函数ともども、A+ 上の函数と同一視することができる。 に属する函数 f に対し の元 Mf

で定義する。ここで、第三のカルタン分解 G = UAUU\G/UA+ と同一視するのに用いられた。

Δ を G0/K0 上のラプラス作用素、ΔcG/U のラプラス作用素とすると、

が成り立つ。 の元 F に対し、 に属する函数 MF

で定義すれば、MM とは

なる双対関係を満たす。特に

である。G0普遍包絡環の中心に属する他の作用素に対しても同様の両立性条件が存在する。これは G0 上で が φλ に比例するという球函数の固有函数による特徴付けから従う。比例定数は

で与えられる。さらに今の場合には

である[27]f = MF が成り立つならば、G 上の F の球反転公式は G0 上の f に対して

が成り立つことを含意する[28][29]。実際、

である。SL(2, R) に対する Godement (1957) の計算を一般化する、b(λ) の積分の直接計算は、Flensted-Jensen (1978) では未解決問題のまま残されていた[30]b(λ) に対する明示的な積公式の一つは、先の Harish-Chandra (1966) によるプランシュレル測度の決定から知られており、

で与えられる[31][32]。 ただし α は ルート系の正ルートすべてを亘るものとし、C は正規化定数でガンマ函数の積の商として与えられる。

ハリッシュ=チャンドラによるプランシュレルの定理

G は中心が有限な非コンパクト連結実編単純リー群で、そのリー環を とする。また、極大コンパクト部分群 K がカルタン対合 σ の不動点部分群として与えられるものとする。 における σ の ±1-固有空間とすると、K のリー環であり、and と合わせてカルタン分解

が与えられる。 の極大可換部分環とし、 の元 α に対し

とする。α ≠ 0 かつ ならば α は制限ルートであるといい、 をその重複度と呼ぶ。 と置けば G = KAK が成り立つ。キリング形式を制限したものは 上の(従って 上の)内積を定めるので、 と同一視することができるようになる。この内積に関して、制限ルートの全体 Σ はルート系となり、そのワイル群W = NK(A)/CK(A) と同一視することができる。正ルート系を一つ選べばワイルの小部屋 が定まる。制限ルート系 Σ0 は α/2 がルートとならないようなルート α からなる。

の元 λ に対して、上で述べたように球函数 φ λ を定めると、Cc(K\G/K) に属する函数 f の球変換は

で定義され、球反転公式

であることを述べる。ここで、ハリッシュ=チャンドラの c-函数 c(λ) は

で定義される[33]。ただし、 であり、定数 c0

に対して、c(–iρ) = 1 が成り立つように選ぶものとする。

球函数に対するプランシュレルの定理は、写像

がユニタリであり、 による畳み込みを による乗算へ写すことを述べるものである。

ハリッシュ=チャンドラの球函数展開

G = KAK ゆえ、G/K 上の K-不変函数は A 上の函数と同一視することができて、従ってワイル群 W の作用で不変な 上の函数と同一視することができる。特に、G/K 上のラプラス作用素 Δ は G の作用と可換であるから、Δ は 上の W-不変な二階微分作用素 L を定める。この作用素 L はラプラス作用素の球対称成分 (radial part) と呼ばれる。一般に、X の元ならば、

により、一般微分作用素(あるいはベクトル場)を定める。これらの作用素を用いて L

という式に表すことができる[34]。ただし、 の元 Aα

で定義されるものとし、また

は任意に選んだ正規直交基底 (Xi) に対応する 上のラプラス作用素である。

以上より、

となるから、L を定数係数作用素 L0 の摂動と見做すことができる。

いま、球函数 φλ はラプラス作用素

の固有函数、従って 上の W-不変函数と見るとき L の固有函数である。

eiλ–ρ およびその W による変換は L0 の同じ固有値に属する固有函数であるから、φλ に対する公式は、正ルートの非負整数係数線型結合全体の成す錐 Λ に関する摂動級数

を用いて自然に見ることができ、fλW による変換として書ける。表式

から係数 aμ(λ) に対する漸化式が導かれる。特に係数は一意的に決まり、級数及びその導函数は W基本領域 上で絶対収斂する。注目すべきは、fλG/K 上の別の G-不変微分作用素の固有函数でもあり、何れも 上の W-不変微分作用素を導くことがわかることである。

ここから、φλfλ とその W による変換との線型結合

として表すことができることが従う[35]。ここで c(λ) はハリッシュ=チャンドラの c-函数である。これは、 の元 X と十分大きな t < 0 に対して

なる形で φλ における漸近挙動を記述する[36]。ハリッシュ=チャンドラは Gブリュア分解[37]

を用いて φλ に、従って c(λ) に、対する二次の積分公式を得た。ただし、B = MAN で合併は非交和である。Wコクセター元、即ち の上へ写す唯一の元 s0 を取ると、σ(N) が稠密開軌道 G/B = K/M でその成分が次元が真に小さく従って測度零であるような胞体の和となるようなものを持つことがわかる。これにより、もともと K/M 上で定義される φλ の積分公式

を σ(N) 上の積分公式

に引き移すことができる[38]

の元 X に対して

が成り立つから、φλ の漸近挙動はこの積分から読み取ることができて、公式

が導かれる[39]

ハリッシュ=チャンドラの c-函数

The many roles of Harish-Chandra's c-function in non-commutative harmonic analysis are surveyed in Helgason (2000). Although it was originally introduced by Harish-Chandra in the asymptotic expansions of spherical functions, discussed above, it was also soon understood to be intimately related to intertwining operators between induced representations, first studied in this context by Bruhat (1957). These operators exhibit the unitary equivalence between πλ and πsλ for s in the Weyl group and a c-function cs(λ) can be attached to each such operator: namely the value at 1 of the intertwining operator applied to ξ0, the constant function 1, in L2(K/M).[40] Equivalently, since ξ0 is up to scalar multiplication the unique vector fixed by K, it is an eigenvector of the intertwining operator with eigenvalue cs(λ). These operators all act on the same space L2(K/M), which can be identified with the representation induced from the 1-dimensional representation defined by λ on MAN. Once A has been chosen, the compact subgroup M is uniquely determined as the centraliser of A in K. The nilpotent subgroup N, however, depends on a choice of a Weyl chamber in , the various choices being permuted by the Weyl group W = M ' / M, where M ' is the normaliser of A in K. The standard intertwining operator corresponding to (s, λ) is defined on the induced representation by[41]

where σ is the Cartan involution. It satisfies the intertwining relation

The key property of the intertwining operators and their integrals is the multiplicative cocycle property[42]

whenever

for the length function on the Weyl group associated with the choice of Weyl chamber. For s in W, this is the number of chambers crossed by the straight line segment between X and sX for any point X in the interior of the chamber. The unique element of greatest length s0, namely the number of positive restricted roots, is the unique element that carries the Weyl chamber onto . By Harish-Chandra's integral formula, it corresponds to Harish-Chandra's c-function:

The c-functions are in general defined by the equation

where ξ0 is the constant function 1 in L2(K/M). The cocycle property of the intertwining operators implies a similar multiplicative property for the c-functions:

provided

This reduces the computation of cs to the case when s = sα, the reflection in a (simple) root α, the so-called "rank-one reduction" of Gindikin & Karpelevič (1962). In fact the integral involves only the closed connected subgroup Gα corresponding to the Lie subalgebra generated by where α lies in Σ0+.[43] Then Gα is a real semisimple Lie group with real rank one, i.e. dim Aα = 1, and cs is just the Harish-Chandra c-function of Gα. In this case the c-function can be computed directly by various means:

  • by directly computing the integral, which can be expressed as an integral in two variables and hence a product of two beta functions.[45][46]

This yields the following formula:

where

The general Gindikin–Karpelevich formula for c(λ) is an immediate consequence of this formula and the multiplicative properties of cs(λ).

ペイリー-ウィーナーの定理

ここでいうペイリー-ウィーナーの定理は、群 G 上でコンパクト台付きの滑らかな K-双変函数の球変換を特徴づけることによって通常のペイリー-ウィーナーの定理を一般化するものである。その必要十分な条件は、球変換が W-不変であること、あるいはまた、適当な R > 0 が存在して、各 N に対して

なる評価を持つようにできることである。この場合 fG/K の原点を中心とする半径 R の閉球体の内部に台を持つ。

このことはヘルガソンとガンゴリが示した (Helgason (1970) pg. 37)。

この定理は後に Flensted-Jensen (1986) が、球反転定理とは独立に、彼の複素係数の場合への還元法の修正版を用いて証明している[47]

ローゼンバーグによる反転公式の証明

Rosenberg (1977) noticed that the Paley-Wiener theorem and the spherical inversion theorem could be proved simultaneously, by a trick which considerably simplified previous proofs.

The first step of his proof consists in showing directly that the inverse transform, defined using Harish-Chandra's c-function, defines a function supported in the closed ball of radius R about the origin if the Paley-Wiener estimate is satisfied. This follows because the integrand defining the inverse transform extends to a meromorphic function on the complexification of ; the integral can be shifted to for μ in and t > 0. Using Harish-Chandra's expansion of φλ and the formulas for c(λ) in terms of Gamma functions, the integral can be bounded for t large and hence can be shown to vanish outside the closed ball of radius R about the origin.[48]

This part of the Paley-Wiener theorem shows that

defines a distribution on G/K with support at the origin o. A further estimate for the integral shows that it is in fact given by a measure and that therefore there is a constant C such that

By applying this result to

it follows that

A further scaling argument allows the inequality C = 1 to be deduced from the Plancherel theorem and Paley-Wiener theorem on .[49][50]

シュヴァルツ函数

ハリッシュ=チャンドラ・シュヴァルツ空間は

で定義される[51]。球変換によってこれは、 上の W-不変シュヴァルツ函数の空間 の上へ写る。

ハリッシュ=チャンドラのもともとの証明は帰納法を用いた長いものであった[6][7][52]が、 Anker (1991) はペイリー-ウィーナーの定理の一種と反転公式を用いて直接的に簡略化した短く単純な証明を発見した。アンカーは、ハリッシュ=チャンドラ・シュヴァルツ函数の球変換が通常のシュヴァルツ函数となることを示した。そして彼の重要な着眼点は、古典的な評価を用いて、通常のシュヴァルツ空間の半ノルムを備えたペイリー-ウィーナー空間上で逆変換が連続であると示すことであった。

注釈

  1. ^ Helgason 1984, pp. 492–493, historical notes on the Plancherel theorem for spherical functions
  2. ^ Harish-Chandra 1951
  3. ^ Harish-Chandra 1952
  4. ^ Gelfand & Naimark 1948
  5. ^ Guillemin & Sternberg 1977
  6. ^ a b c Harish-Chandra 1958a
  7. ^ a b Harish-Chandra 1958b
  8. ^ Gindikin & Karpelevič 1962
  9. ^ Harish-Chandra 1966, section 21
  10. ^ このスペクトルは G 上の畳み込みに関する両側 K-不変可積分函数全体の成す可換バナッハ ∗-環(これは の稠密 ∗-部分代数)と一致する。
  11. ^ μ のラドン・ニコディムの定理の意味での同値類がただ一つ
  12. ^ Davies 1990
  13. ^ Lax & Phillips 1976
  14. ^ Helgason 1984, p. 38
  15. ^ a b c Flensted-Jensen 1978
  16. ^ Anker 1991
  17. ^ Jorgenson & Lang 2001
  18. ^ Helgason 1984, p. 41
  19. ^ Helgason 1984, p. 46
  20. ^ Takakhashi 1963
  21. ^ Loeb 1979
  22. ^ 正ルートの総和の半分でシフトされた最高ウェイトによる添字付けもある
  23. ^ Helgason 1984, pp. 423–433
  24. ^ Flensted-Jensen 1978, p. 115
  25. ^ Helgason 1978
  26. ^ U に対する球反転公式は、函数 の全体が、類函数全体の成す空間の正規直交基底を成すという主張と同値である。
  27. ^ Flensted-Jensen, p. 133
  28. ^ Flensted-Jensen 1978, p. 133
  29. ^ Helgason 1984, p. 490–491
  30. ^ b(λ) は A0 上の積分として書くことができる。ただし K = K0A0K0K のカルタン分解とする。従ってこの積分は、多次元ゴドマン型積分の交代和となり、その組合せ論は U/K0 に対するカルタン-ヘルガソンの定理によって制御される。同等の計算は Beerends (1987), Stade (1999) および Gindikin (2008) で既に議論されていたラドン変換の理論においても生じる。
  31. ^ Helgason 1984
  32. ^ Beerends 1987, p. 4–5
  33. ^ Helgason, p. 447
  34. ^ Helgason 1984, p. 267
  35. ^ Helgason 1984, p. 430
  36. ^ Helgason 1984, p. 435
  37. ^ Helgason 1978, p. 403
  38. ^ Helgason 1984, p. 436
  39. ^ Halgason 1984, p. 447
  40. ^ Knapp 2001, Chapter VII
  41. ^ Knapp 2001, p. 177
  42. ^ Knapp 2001, p. 182
  43. ^ Helgason 1978, p. 407
  44. ^ Helagson 1984, p. 484
  45. ^ Helgason 1978, p. 414
  46. ^ Helgason 1984, p. 437
  47. ^ 後者の、台に関する主張はムスタパ・ライスの結果の代わりにコスタント多項式を対応させる明示的手法を用いて、フレンステッド-イェンゼンの証明から従う。
  48. ^ Helgason 1984, pp. 452–453
  49. ^ Rosenberg 1977
  50. ^ Helgason 1984, p. 588–589
  51. ^ Anker 1991, p. 347
  52. ^ Helgason 1984, p. 489

参考文献