平坦加群

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索

数学において、平坦加群(へいたんかぐん、: flat module)とは、関手 M ⊗ –完全となる加群 M のことである。 ホモロジー代数学における基本的な概念のひとつ。

定義[編集]

AMA 加群とする。 A 加群からなる任意の短完全系列

0 \rightarrow N_1 \rightarrow N_2 \rightarrow N_3 \rightarrow 0

に対して、M とのテンソル積をとった系列

0 \rightarrow M \otimes_A N_1 \rightarrow M \otimes_A N_2 \rightarrow M \otimes_A N_3 \rightarrow 0

完全になるとき、MA平坦である、または M は平坦 A 加群であるという。

なお一般の加群 M に対しては、関手 MA は右完全ゆえ

M \otimes_A N_1 \rightarrow M \otimes_A N_2 \rightarrow M \otimes_A N_3 \rightarrow 0

は完全系列となるが、左端のが一般には単射にならない。

A 代数 B平坦であるとは、BA 加群として平坦であることをいう。

性質[編集]

  • 射影加群は平坦である。特に自由加群も平坦である。
  • (推移性) B が平坦 A 代数で、M が平坦 B 加群ならば、MA 加群としても平坦である。
  • (係数拡大) A 加群 M が平坦ならば、任意の A 代数 B に対し、B 加群 MA B も平坦である。
  • AS を環 A積閉集合 S による局所化とすると、ASA 上平坦である。
  • (局所性)上より、A の任意の素イデアル p に対し、Mp = MA Ap は平坦な Ap 加群となる。逆に、任意の p に対しMpAp 上平坦ならば、MA 上平坦である。
  • IA の自明でないイデアルとすると、A/IAS の形に書ける場合を除き、A 加群 A/I は平坦でない。
  • A 加群 M が平坦であることと、任意の A 加群 N に対し Tor1A(M, N) = 0 となることとは同値である。

忠実平坦性[編集]

M は平坦な A 加群であるとすると、次に述べる条件は同値である。これらの条件を満たすとき M忠実平坦A 加群であるという。

  • A の任意の極大イデアル m に対し、MmM が成り立つ。
  • 0 → MA N1MA N2MA N3 → 0完全ならば、0 → N1N2N3 → 0 も完全である。
  • 0 でない任意の A 加群 N に対し、MA N ≠ 0 が成り立つ。

A 代数 B に関しても同様に忠実平坦性を定義する。この場合は次も同値である。

  • A の任意の素イデアル p に対し、Aq = p なる B の素イデアル q が存在する。

概型論[編集]

スキームの射 ƒ : XY が平坦であるとは、X のすべての点 x に対し、局所環の射 OY, ƒ(x)OX, x が平坦であることをいう。環における平坦性が局所的性質であることから、アフィンスキームの間の射の平坦性は対応する環の射の平坦性と同値である。

平坦かつ全射である射は忠実平坦であるという。これもアフィンスキームにおいては環での定義と一致する。

平坦分解と平坦次元[編集]

R 上の加群 M に対し、各 R-加群 F_i が平坦加群であるような次の完全列

\cdots \to F_{n+1} \to F_n \to \cdots \to F_1 \to F_0 \to M \to 0

M平坦分解という。自由分解や射影分解は平坦分解である。すべての i > n に対しF_i=0 であるような平坦分解を長さ n の平坦分解という。そのような n が存在する場合その最小値を M平坦次元といい、存在しない場合は平坦次元は ∞ という。平坦次元は fd(M) と書かれる。平坦次元は射影次元を超えない。左 R-加群 M と整数 n ≥ 0 に対して次は同値。

  • fd(M) ≤ n
  • 任意の右 R-加群 X に対して、\mathrm{Tor}_{n+1}^R(X,M)=\{0\}
  • 任意の in+1 と任意の右 R-加群 X に対して、\mathrm{Tor}_i^R(X,M)=\{0\}

関連項目[編集]