KP方程式

出典: フリー百科事典『ウィキペディア(Wikipedia)』
ナビゲーションに移動 検索に移動

KP方程式 (: Kadomtsev–Petviashvili equation) は非線形波動・水面波を記述する偏微分方程式であり、次のように表わされる。

KdV方程式の2次元版方程式であり、KdV方程式と並ぶ可積分系ソリトン方程式の代表例である。

変種[編集]

KP方程式に関連した業績のある研究者[編集]

海外[編集]

日本[編集]

関連項目[編集]

出典[編集]

  1. ^ Wazwaz, A. M. (2008). Solitons and singular solitons for the Gardner–KP equation. Applied Mathematics and Computation, 204(1), 162-169.
  2. ^ Xu, B., & Liu, X. Q. (2009). Classification, reduction, group invariant solutions and conservation laws of the Gardner-KP equation. Applied mathematics and computation, 215(3), 1244-1250.
  3. ^ Naz, R., Ali, Z., & Naeem, I. (2013). Reductions and new exact solutions of ZK, Gardner KP, and modified KP equations via generalized double reduction theorem. In Abstract and Applied Analysis (Vol. 2013). Hindawi.
  4. ^ Jawad, A. J. A. M., Mirzazadeh, M., & Biswas, A. (2015). Dynamics of shallow water waves with Gardner–Kadomtsev–Petviashvili equation. Discrete and Continuous Dynamical Systems, Series S, 8(6), 1155-1164.
  5. ^ Wazwaz, A. M., & El-Tantawy, S. A. (2017). Solving the -dimensional KP–Boussinesq and BKP–Boussinesq equations by the simplified Hirota’s method. Nonlinear Dynamics, 88(4), 3017-3021.
  6. ^ Sun, B., & Wazwaz, A. M. (2018). General high–order breathers and rogue waves in the -dimensional KP–Boussinesq equation. Communications in Nonlinear Science and Numerical Simulation, 64, 1-13.
  7. ^ Wazwaz, A. M. (2008). Multiple-soliton solutions for the Lax–Kadomtsev–Petviashvili (Lax–KP) equation. Applied Mathematics and computation, 201(1-2), 168-174.
  8. ^ Tokihiro, T., Takahashi, D., & Matsukidaira, J. (2000). Box and ball system as a realization of ultradiscrete nonautonomous KP equation. Journal of Physics A: Mathematical and General, 33(3), 607.
  9. ^ a b Shinzawa, N., & Hirota, R. (2003). The Bäcklund transformation equations for the ultradiscrete KP equation. Journal of Physics A: Mathematical and General, 36(16), 4667.
  10. ^ a b 新沢信彦, & 広田良吾. (2003). 超離散 KP 方程式, 超離散 BKP 方程式の Backlund 変換方程式 (可積分系研究の新展開: 連続・離散・超離散).
  11. ^ Krichever, I. M., & Novikov, S. P. (1978). Holomorphic bundles over Riemann surfaces and the Kadomtsev—Petviashvili equation. I. Functional Analysis and Its Applications, 12(4), 276-286.
  12. ^ Fokas, A. S., & Ablowitz, M. J. (1983). Method of solution for a class of multidimensional nonlinear evolution equations. Physical Review Letters, 51(1), 7.
  13. ^ Fokas, A. S., & Ablowitz, M. J. (1983). On the inverse scattering and direct linearizing transforms for the Kadomtsev-Petviashvili equation. Physics Letters A, 94(2), 67-70.
  14. ^ Fokas, A. S., & Ablowitz, M. J. (1983). On the Inverse Scattering of the Time‐Dependent Schrödinger Equation and the Associated Kadomtsev‐Petviashvili (I) Equation. Studies in Applied Mathematics, 69(3), 211-228.
  15. ^ a b Hirota, R., Ohta, Y., & Satsuma, J. (1988). Solutions of the Kadomtsev-Petviashvili equation and the two-dimensional Toda equations. Journal of the Physical Society of Japan, 57(6), 1901-1904.
  16. ^ 松木平淳太, & 薩摩順吉. (1989). KP hierarchy の対称性と保存量 (ソリトン理論における広田の方法).
  17. ^ Willox, R., Tokihiro, T., & Satsuma, J. (1997). Darboux and binary Darboux transformations for the nonautonomous discrete KP equation. Journal of Mathematical Physics, 38(12), 6455-6469.
  18. ^ Isojima, S., Willox, R., & Satsuma, J. (2002). On various solutions of the coupled KP equation. Journal of Physics A: Mathematical and General, 35(32), 6893.
  19. ^ Matsukidaira, J., Satsuma, J., & Strampp, W. (1990). Conserved quantities and symmetries of KP hierarchy. Journal of mathematical physics, 31(6), 1426-1434.
  20. ^ Matsukidaira, J., Satsuma, J., & Strampp, W. (1990). Conserved quantities and symmetries of KP hierarchy. Journal of mathematical physics, 31(6), 1426-1434.
  21. ^ Kajiwara, K., Matsukidaira, J., & Satsuma, J. (1990). Conserved quantities of two-component KP hierarchy. Physics Letters A, 146(3), 115-118.
  22. ^ Date, E., Jimbo, M., Kashiwara, M., & Miwa, T. (1982). Transformation groups for soliton equations—Euclidean Lie algebras and reduction of the KP hierarchy—. Publications of the Research Institute for Mathematical Sciences, 18(3), 1077-1110.
  23. ^ Date, E., Jimbo, M., Kashiwara, M., & Miwa, T. (1981). Operator Approach to the Kadomtsev-Petviashvili Equation–Transformation Groups for Soliton Equations III–. Journal of the Physical Society of Japan, 50(11), 3806-3812.
  24. ^ Date, E., Jimbo, M., Kashiwara, M., & Miwa, T. (1982). Transformation groups for soliton equations: IV. A new hierarchy of soliton equations of KP-type. Physica D: Nonlinear Phenomena, 4(3), 343-365.
  25. ^ Date, E., Jimbo, M., Kashiwara, M., & Miwa, T. (1982). Quasi-Periodic Solutions of the Orthogonal KP Equation—Transformation Groups for Soliton Equations V—. Publications of the Research Institute for Mathematical Sciences, 18(3), 1111-1119.
  26. ^ Date, E., Jimbo, M., Kashiwara, M., & Miwa, T. (1981). KP hierarchies of orthogonal and symplectic type–Transformation groups for soliton equations VI–. Journal of the Physical Society of Japan, 50(11), 3813-3818.
  27. ^ 広田良吾. (2013). KP 差分方程式系とその解の構造, 京都大学数理解析研究所講究録
  28. ^ Ohkuma, K., & Wadati, M. (1983). The Kadomtsev-Petviashvili equation: the trace method and the soliton resonances. Journal of the Physical society of Japan, 52(3), 749-760.

参考文献[編集]

  • Kadomtsev, B. B.; Petviashvili, V. I. (1970). “On the stability of solitary waves in weakly dispersive media”. Sov. Phys. Dokl. 15: 539–541. Bibcode1970SPhD...15..539K. . Translation of “Об устойчивости уединенных волн в слабо диспергирующих средах”. Doklady Akademii Nauk SSSR 192: 753–756. 
  • Previato, Emma (2001), “KP方程式”, in Hazewinkel, Michiel, Encyclopaedia of Mathematics, Springer, ISBN 978-1-55608-010-4, http://eom.springer.de/K/k120110.htm 
  • Kodama, Y. (2017). KP Solitons and the Grassmannians: combinatorics and geometry of two-dimensional wave patterns. Springer.
  • 時弘哲治、箱玉系の数理、朝倉書店

関連文献[編集]

和文[編集]

英文[編集]

  • Lou, S. Y., & Hu, X. B. (1997). Infinitely many Lax pairs and symmetry constraints of the KP equation. Journal of Mathematical Physics, 38(12), 6401-6427.
  • Nakamura, A. (1989). A bilinear N-soliton formula for the KP equation. Journal of the Physical Society of Japan, 58(2), 412-422.
  • Kodama, Y. (2004). Young diagrams and N-soliton solutions of the KP equation. Journal of Physics A: Mathematical and General, 37(46), 11169.
  • Xiao, T., & Zeng, Y. (2004). Generalized Darboux transformations for the KP equation with self-consistent sources. Journal of Physics A: Mathematical and General, 37(28), 7143.
  • Minzoni, A. A., & Smyth, N. F. (1996). Evolution of lump solutions for the KP equation. Wave Motion, 24(3), 291-305.

外部リンク[編集]