初等代数学

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動先: 案内検索

初等代数学(しょとうだいすうがく、: elementary algebra)は、数学の主要な部門の1つである代数学の基本概念のいくつかを含む。典型的には、中学校の生徒に教えられ、算数の理解を基礎にしている。算数が具体的な数を扱うのに対し[1]、代数学は変数と呼ばれる固定値のない量を導入する[2]。この変数を使うには、代数表記を使うことと算数で導入された演算子の一般的な規則を理解することが必要である。抽象代数学とは異なり、初等代数学は実数複素数の領域外の代数的構造には関係しない。

量を意味するために変数を使うことで、量と量の間にある一般的な関係を形式的かつ簡潔に表現することができ、より広い範囲の問題を解決することができるようになる。科学と数学における多くの量的関係は、代数方程式として表される。

代数的記法[編集]

代数表記は、代数がどのように書かれているかを記述する。代数表記は特定の規則と慣例に従い、独自の用語を持っている。例えば、式 には次の構成要素がある。

Algebraic equation notation.svg
1: 指数2: 係数3: 4: 演算子5: 定数変数
  • 係数は、変数に掛かる数値(または数値定数を表す文字)である(変数との乗算記号は省略されているものと考えられる)。
  • 項は互いに加え合わされる各々の、係数、変数、定数および指数からなる一塊で、プラスおよびマイナス演算子によって他の項から分離される。[3]
  • 文字は変数と定数を表す。慣例により、アルファベットの先頭の文字(例えば )は、主に定数を表すために使われ、アルファベットの末尾の文字(例えば )は変数を表すために使われる[4]。文字はふつうイタリック体で書かれる[5]

代数演算は足し算引き算掛け算割り算累乗など[6]の算術演算と同じように機能し、代数変数と項に適用される[7]

  • 乗算記号はふつう省略され、2つの変数または項の間にスペースがない場合や、係数が使われる場合に暗示される。例えば、× と書かれ、×× と書かれる。[8]
  • ふつう、最も高い指数を持つ項は左に書かれる。例えば、 の左に書かれる。
  • 係数や指数が1の場合、ふつうは省略される。例えば、 と書かれ、 と書かれる。[9][10]
  • 指数が0の場合、結果は常に1である。例えば、 は常に に書き換えられる[11]。ただし、 は定義されていないため、式に現れてはならず、指数に変数が現れる式を単純化する際には注意が必要である。

代用表記[編集]

文字や記号だけしか使用できず必要な書式が使用できない場合、代用表記が代数式で使用される。例えば、指数はふつう上付き文字を用いてフォーマットされる。 の場合、プレーンテキストTeXマークアップ言語ではキャレット記号 ^ は指数を表すので、 は "x^2" と書かれる[12][13]Ada[14]FORTRAN[15]Perl[16]Python[17]Ruby[18]のようなプログラミング言語では二重のアスタリスクが使用されるので、 は "x**2" と書かれる。多くのプログラミング言語と計算機では、乗算記号を表すために1つのアスタリスクを明示的に使用する必要がある[19]。例えば、 は "3*x" と書かれる。

出典[編集]

  1. ^ H.E. Slaught and N.J. Lennes, Elementary algebra, Publ. Allyn and Bacon, 1915, page 1 (republished by Forgotten Books)
  2. ^ Lewis Hirsch, Arthur Goodman, Understanding Elementary Algebra With Geometry: A Course for College Students, Publisher: Cengage Learning, 2005, ISBN 9780534999728, 654 pages, page 2
  3. ^ Richard N. Aufmann, Joanne Lockwood, Introductory Algebra: An Applied Approach, Publisher Cengage Learning, 2010, ISBN 9781439046043page 78
  4. ^ William L. Hosch (editor), The Britannica Guide to Algebra and Trigonometry, Britannica Educational Publishing, The Rosen Publishing Group, 2010, ISBN 1615302190, 9781615302192, page 71
  5. ^ James E. Gentle, Numerical Linear Algebra for Applications in Statistics, Publisher: Springer, 1998, ISBN 9780387985428, 221 pages, [James E. Gentle page 183]
  6. ^ Ron Larson, Robert Hostetler, Bruce H. Edwards, Algebra And Trigonometry: A Graphing Approach, Publisher: Cengage Learning, 2007, ISBN 9780618851959, 1114 pages, page 6
  7. ^ Horatio Nelson Robinson, New elementary algebra: containing the rudiments of science for schools and academies, Ivison, Phinney, Blakeman, & Co., 1866, page 7
  8. ^ Sin Kwai Meng, Chip Wai Lung, Ng Song Beng, "Algebraic notation", in Mathematics Matters Secondary 1 Express Textbook, Publisher Panpac Education Pte Ltd, ISBN 9789812738820page 68
  9. ^ David Alan Herzog, Teach Yourself Visually Algebra, Publisher John Wiley & Sons, 2008, ISBN 9780470185599, 304 pages, page 72
  10. ^ John C. Peterson, Technical Mathematics With Calculus, Publisher Cengage Learning, 2003, ISBN 9780766861893, 1613 pages, page 31
  11. ^ Jerome E. Kaufmann, Karen L. Schwitters, Algebra for College Students, Publisher Cengage Learning, 2010, ISBN 9780538733540, 803 pages, page 222
  12. ^ Ramesh Bangia, Dictionary of Information Technology, Publisher Laxmi Publications, Ltd., 2010, ISBN 9789380298153page 212
  13. ^ George Grätzer, First Steps in LaTeX, Publisher Springer, 1999, ISBN 0817641327, 9780817641320, page 17
  14. ^ S. Tucker Taft, Robert A. Duff, Randall L. Brukardt, Erhard Ploedereder, Pascal Leroy, Ada 2005 Reference Manual, Volume 4348 of Lecture Notes in Computer Science, Publisher Springer, 2007, ISBN 9783540693352page 13
  15. ^ C. Xavier, Fortran 77 And Numerical Methods, Publisher New Age International, 1994, ISBN 9788122406702page 20
  16. ^ Randal Schwartz, Brian Foy, Tom Phoenix, Learning Perl, Publisher O'Reilly Media, Inc., 2011, ISBN 9781449313142page 24
  17. ^ Matthew A. Telles, Python Power!: The Comprehensive Guide, Publisher Course Technology PTR, 2008, ISBN 9781598631586page 46
  18. ^ Kevin C. Baird, Ruby by Example: Concepts and Code, Publisher No Starch Press, 2007, ISBN 9781593271480page 72
  19. ^ William P. Berlinghoff, Fernando Q. Gouvêa, Math through the Ages: A Gentle History for Teachers and Others, Publisher MAA, 2004, ISBN 9780883857366page 75