巡回数

出典: フリー百科事典『ウィキペディア(Wikipedia)』
ダイヤル数から転送)
移動先: 案内検索

巡回数(じゅんかいすう、Cyclic Number)とは、2倍、3倍、4倍...と乗算したとき(あるいは同じ数を連続して加算したとき)に、その各桁の数を順序を崩さずに巡回させた数になる、整数のことである。ダイヤル数とも。

[編集]

十進法において代表的な、142857で計算した例を示す。

  • 142857 × 1 = 142857
  • 142857 × 2 = 285714
  • 142857 × 3 = 428571
  • 142857 × 4 = 571428
  • 142857 × 5 = 714285
  • 142857 × 6 = 857142

となる。また、

  • 142857 × 7 = 999999

この数は 1.0 ÷ 7.0 が 0.142857142857142857... という循環小数になることと関連がある( 0.142857142857142857... × 7.0 = 0.999... = 1.0 であることにも注目)。詳細は外部リンクのMathWorld等を参照。

このような数は、他に 588235294117647、52631578947368421、434782608695652173913 等がある。(オンライン整数列大辞典の数列 A180340)

巡回数となる 1/pp − 1 桁の循環節となる分数の分母は 7, 17, 19, 23, 29, 47, 59, 61, 97, 109,… である。 (オンライン整数列大辞典の数列 A001913)

  • 巡回数となる分数の分母は素数である。ただし p − 1 桁未満の 9 の列で割り切れると巡回数とはならない。
例.13は素数であるが 1/13 は巡回数をもつ分数ではない。これは 999999 ÷ 13 = 76923 と割り切れるからである。

8倍以降(142857)[編集]

8倍以上では崩れてしまうように思えるが、

  • 142857 × 8 = 1142856 → 1を6に加える → 142857
  • 142857 × 9 = 1285713 → 1を3に加える → 285714
  • 142857 × 10 = 1428570 → 1を0に加える → 428571
  • 142857 × 11 = 1571427 → 1を7に加える → 571428
  • 142857 × 12 = 1714284 → 1を4に加える → 714285
  • 142857 × 13 = 1857141 → 1を1に加える → 857142
  • 142857 × 14 = 1999998 → 1を8に加える → 999999
  • 142857 × 15 = 2142855 → 2を5に加える → 142857
  • 142857 × 16 = 2285712 → 2を2に加える → 285714

となる。このように、一番左の桁の数を一番右の桁の数に加えるという操作を行うと、また 142857 の順序が現れる。

これは、より大きい数でも成り立つ。

  • 142857 × 71 = 10142847 → 左2桁の 10 を残りの 142847 に加える → 142857
  • 142857 × 52989018 = 7569852144426 → 右から6桁ずつ 7、569852、144426 と区切ってそれぞれを足す → 714285

複数のサイクル[編集]

1/13 の循環節である 076923 は巡回数ではないが、1-12倍すると以下の2グループに分けることができる。

    • 076923 × 1 = 076923
    • 076923 × 3 = 230769
    • 076923 × 4 = 307692
    • 076923 × 9 = 692307
    • 076923 × 10 = 769230
    • 076923 × 12 = 923076
    • 076923 × 2 = 153846
    • 076923 × 5 = 384615
    • 076923 × 6 = 461538
    • 076923 × 7 = 538461
    • 076923 × 8 = 615384
    • 076923 × 11 = 846153


合成数の逆数でも巡回する場合がある。012345679は 81 の逆数の循環節であり、似たような性質がある。

  • 12345679 × 19 = 234567901
  • 12345679 × 28 = 345679012
  • 12345679 × 37 = 456790123
  • 12345679 × 46 = 567901234
  • 12345679 × 55 = 679012345
  • 12345679 × 64 = 790123456
  • 12345679 × 73 = 901234567
  • 12345679 × 82 = 1012345678 → 012345679
  • 12345679 × 91 = 1123456789 → 123456790

十進法以外の巡回数[編集]

十進法以外においても巡回数を考えることができる。いくつか例を挙げる。

二進における 0011(=3) は巡回数である。

  • 0011 × 001 = 0011
  • 0011 × 010 = 0110
  • 0011 × 011 = 1001
  • 0011 × 100 = 1100

五進における 032412(=2232) は巡回数である。

  • 032412 × 1 = 032412
  • 032412 × 2 = 120324
  • 032412 × 3 = 203241
  • 032412 × 4 = 241203
  • 032412 × 5 = 324120
  • 032412 × 6 = 412032

十二進における 2497(=4147) は巡回数である。

  • 2497 × 1 = 2497
  • 2497 × 2 = 4972
  • 2497 × 3 = 7249
  • 2497 × 4 = 9724

底が平方数の場合、2桁以上の巡回数は存在しない。

外部リンク[編集]