「トーマス=フェルミ模型」の版間の差分

出典: フリー百科事典『ウィキペディア(Wikipedia)』
削除された内容 追加された内容
en:Thomas–Fermi model(12:10, 17 February 2017‎)の最後の段落以外を翻訳
(相違点なし)

2017年4月9日 (日) 16:59時点における版

トーマス=フェルミ模型(Thomas–Fermi (TF) model)[1][2]とは、シュレーディンガー方程式[3] が導入されて間もなく、それを半古典的に扱った多体系電子構造についての量子力学的な理論のこと。ルウェリン・トーマスエンリコ・フェルミに因んで名づけられた。 波動関数から離れて電子密度を用いて定式化したもので、密度汎関数理論の原型ともなった。 トーマス=フェルミ模型は、核電荷が無限大の極限においてのみ正確な結果を与える。 現実的な系を考えるために近似を用いると、定量性に乏しい予言しかできず、原子の殻構造や固体のフリーデル振動のような密度についてのいくつかの一般的性質を再現することもできなくなる。しかし定性的な傾向を分析的に抽出でき、またモデルを解くことが簡単であることから、多くの分野で応用されている。トーマス=フェルミ理論により表現された運動エネルギーは、軌道フリー密度汎関数理論のようなより洗練された密度近似運動エネルギーの一つとしても使われている。

1927年にトーマスとフェルミは独立に、この統計的モデルを用いて原子中の電子分布を近似した。 実際の電子は原子中で不均一に分布しているが、近似的に電子は微小体積要素ΔVに(局所的に)それぞれ均一に分布しており、電子密度は各ΔVで異なっているとする。

運動エネルギー

基底状態にある原子中の微小体積要素ΔVにおいて、 運動量空間での球体Vfはフェルミ運動量pf 以下であることから[4]

ここでΔV中の点を表す。

これに相当する相空間での体積は、

ΔVph中の電子は均一に分布しており、 この相空間での体積h3あたり2つの電子を持つ [5] 。 ここでh換算プランク定数とすると、ΔVph中の電子数は、

ΔV中の電子数は、

ここでは電子密度である。

ΔVΔVphの電子数は等しいとすると、

におけるpからp+dpの運動量をもつ電子の割合は、

質量 meの電子の古典的な運動エネルギーを用いると、原子中の電子の位置における単位体積あたりの運動エネルギーは、

ここでは先ほどので表したものであり、は、

単位体積あたりの運動エネルギーを全空間で積分すると、電子の全運動エネルギーが得られる[6]

よってトーマス=フェルミ模型によって、電子の全エネルギーは空間的に変化する電子密度のみで表すことができることを示している。この電子の運動エネルギー表現と、原子核-電子相互作用と電子-電子相互作用の古典的な表現(どちらも電子密度で表せる)とを合わせることで、原子のエネルギーを計算できる。

ポテンシャルエネルギー

原子中の電子のポテンシャルエネルギーは、正電荷である原子核の電気的引力によって、

ここでは位置の電子のポテンシャルエネルギーで、原子核の電場によるものである。 位置を中心とする電荷Ze(e電気素量)の原子核の場合、

電気的な相互反発による電子のポテンシャルエネルギーは、

全エネルギー

電子の全エネルギーは、運動エネルギーとポテンシャルエネルギーの和であり[7]

誤差と改良

トーマス=フェルミ方程式による運動エネルギーは近似に過ぎず、パウリの原理による原子の交換エネルギーを表現できていない。 交換エネルギー項は1926年にポール・ディラックによって付け加えられた。

しかしトーマス=フェルミ=ディラック理論は依然として不正確である。 誤差の大部分は運動エネルギー部分によるもので、その次に交換エネルギーと電子相関を完全に無視したことによるものがある。 1962年にエドワード・テラーはトーマス=フェルミ理論では分子結合を記述できないことを示した。 トーマス=フェルミ理論で計算した分子のエネルギーは、構成原子のエネルギーの和より高くなる。 一般的に結合長が均一に増加すると、分子の全エネルギーは減少する [8] [9] [10] [11] 。 これは運動エネルギー表現を改良することで克服することができる。 [12]

トーマス=フェルミの運動エネルギーは、ヴァイツゼッカー相関(1935年)を付け加えることで改良でき [13]、 トーマス=フェルミ=ディラック=ヴァイツゼッカー密度汎関数理論(TFDW-DFT)と呼ばれる。

関連項目

脚注

  1. ^ Thomas, L. H. (1927). “The calculation of atomic fields”. Proc. Cambridge Phil. Soc. 23 (5): 542–548. Bibcode1927PCPS...23..542T. doi:10.1017/S0305004100011683. 
  2. ^ Fermi, Enrico (1927). “Un Metodo Statistico per la Determinazione di alcune Prioprietà dell'Atomo”. Rend. Accad. Naz. Lincei 6: 602–607. http://babel.hathitrust.org/cgi/pt?seq=339&view=image&size=100&id=mdp.39015001321200&u=1&num=278. 
  3. ^ Schrödinger, Erwin (December 1926). “An Undulatory Theory of the Mechanics of Atoms and Molecules” (PDF). Phys. Rev. 28 (6): 1049–1070. Bibcode1926PhRv...28.1049S. doi:10.1103/PhysRev.28.1049. http://home.tiscali.nl/physis/HistoricPaper/Schroedinger/Schroedinger1926c.pdf. 
  4. ^ March 1992, p.24
  5. ^ Parr and Yang 1989, p.47
  6. ^ March 1983, p. 5, Eq. 11
  7. ^ March 1983, p. 6, Eq. 15
  8. ^ Teller, E. (1962). “On the Stability of molecules in the Thomas–Fermi theory”. Rev. Mod. Phys. 34 (4): 627–631. Bibcode1962RvMP...34..627T. doi:10.1103/RevModPhys.34.627. 
  9. ^ Balàzs, N. (1967). “Formation of stable molecules within the statistical theory of atoms”. Phys. Rev. 156 (1): 42–47. Bibcode1967PhRv..156...42B. doi:10.1103/PhysRev.156.42. 
  10. ^ Lieb, Elliott H.; Simon, Barry (1977). “The Thomas–Fermi theory of atoms, molecules and solids”. Adv. Math. 23 (1): 22–116. doi:10.1016/0001-8708(77)90108-6. 
  11. ^ Parr and Yang 1989, pp.114–115
  12. ^ Parr and Yang 1989, p.127
  13. ^ Weizsäcker, C. F. v. (1935). “Zur Theorie der Kernmassen”. Zeitschrift für Physik 96 (7-8): 431–458. Bibcode1935ZPhy...96..431W. doi:10.1007/BF01337700. 

参考文献

  1. R. G. Parr and W. Yang (1989). Density-Functional Theory of Atoms and Molecules. New York: Oxford University Press. ISBN 978-0-19-509276-9 
  2. N. H. March (1992). Electron Density Theory of Atoms and Molecules. Academic Press. ISBN 978-0-12-470525-8 
  3. N. H. March (1983). “1. Origins – The Thomas–Fermi Theory”. In S. Lundqvist and N. H. March. Theory of The Inhomogeneous Electron Gas. Plenum Press. ISBN 978-0-306-41207-3