ホール・エルー法

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動先: 案内検索
ホール・エルー法の模式図。黒が炭素電極(上が陽極、下が陰極)、赤が溶融氷晶石とアルミナ、灰色が溶融アルミニウム

ホール・エルー法(ホール・エルーほう、Hall-Héroult process)は、唯一実用化されているアルミニウム製錬方法。溶融させた原料を電気分解させることで目的物質を得る溶融塩電解の代表例である[1]1886年アメリカチャールズ・マーティン・ホールフランスポール・エルーによりそれぞれ独自に開発された。

方法[編集]

ホール・エルー法では、まず融剤として氷晶石(現在は蛍石から合成できるヘキサフルオロアルミン酸ナトリウムの合成品が用いられている)とフッ化ナトリウム電解炉により1000°Cほどで融解する。そして、ボーキサイトからバイヤー法によって99.95%まで精錬された酸化アルミニウムを5%程度入れて溶解させ、炭素電極で電気分解を行う。分解されたアルミニウムは融けて陰極に溜まり、酸素陽極と反応して二酸化炭素となるが、800°C以上では炭素電極とさらに反応して一酸化炭素となる。

全体としての化学反応は以下のとおり。

Al2O3 + 3C → 2Al + 3 CO

ここで生成したアルミニウムは一部が電解層に溶解し、二酸化炭素と反応して酸化アルミニウムに戻る逆反応が起こる。この逆反応は電流効率低下の要因となるため、ホール・エルー法の最大電流効率は97%程度だと考えられている[2]

2Al + 3/2CO2 → Al2O3 + 3/2CO

ホール・エルー法の問題点は、融解及び電気分解で大量の電気を消費すること(アルミナ1tにつき15000kWh)である。そのため、アルミニウムは「電気の缶詰」と呼ばれることがある。

これに対し、アルミ缶をリサイクルすると、必要なエネルギーはホール・エルー法の3%で済むといわれているが、実際には融解時に空気中の窒素と反応して窒化アルミニウム AlN として一部が失われる。

この窒化物は融解時にるつぼの表面に浮かぶので捨てられるが、空気中の水分と徐々に反応してアンモニアを生じる。

2Al + N2 → 2AlN
AlN + 3H2O → Al(OH)3 + NH3

歴史[編集]

ホール・エルー法以前、金属アルミニウムは鉱石を金属ナトリウムもしくはカリウムと共に真空中で加熱することによって得られていた。その方法は複雑で、当時高価であった原料を消費していたこともあり製造コストが非常に高く、19世紀前半にはアルミニウムは金や白金よりも高価であった。1855年のパリ万国博覧会ではアルミニウムの延棒がフランスの戴冠用宝玉と共に展示されており「粘土から得た銀」として注目された。また、フランス皇帝ナポレオン3世はアルミニウム製の食器を少数の重要な来賓にのみ使用していたといわれている[3]カストナー法の開発による金属ナトリウムの製造コスト低減などによってアルミニウムの製造コストも低減されていったが[4]、それでもワシントン記念塔の冠石にアルミニウムが採用された当時のアルミニウムは銀よりも高価であった[5]

ホール・エルー法は1886年のほぼ同時期に、アメリカの化学者チャールズ・マーティン・ホールフランスポール・エルーによってそれぞれ独自に開発された。ホール・エルー法では多量の電気を消費するが、ホール・エルー法が開発されたのと同時期にヴェルナー・フォン・ジーメンスによって実用的な発電機が発明されて大量の電気が供給可能になったことや、1888年にホール・エルー法の原料となる酸化アルミニウムの工業的製法であるバイヤー法がオーストリアの化学者カール・ヨーゼフ・バイヤーによって開発されたことで、ホール・エルー法が実用化可能になった[6][7][8]。1888年、ホールはピッツバーグで初の大規模なアルミニウム製造工場を始め、それは後にアルミニウム製造の世界的なメーカーであるアルコア社となった[9]

ホール・エルー法に変わる新たなアルミニウム製造技術の開発も行われているがいずれも商用化には至っておらず、現在でもアルミニウムの工業生産にはホール・エルー法が利用されている[10]。1997年、ホール・エルー法はアルミニウム製造の商業化における重要性を認められ、アメリカ化学会よりNational Historic Chemical Landmarkに認定された[11]。2012年には、アルミニウムの製造1トン当たり12.7トンの二酸化炭素が排出されたと見積もられている[12]

出典[編集]

  1. ^ 溶融塩電解”. コトバンク. 朝日新聞社. 2016年4月29日閲覧。
  2. ^ 増子曻、眞尾紘一郎 (2015). “アルミニウム製錬技術の現状”. 軽金属 (軽金属学会) 65 (2): 66-71. doi:10.2464/jilm.65.66. 
  3. ^ パリ万博で登場した「粘土から得た銀」”. 歴史を見たマテリアル. 神戸製鋼所. 2016年4月30日閲覧。
  4. ^ Manufacturer and builder / Volume 20, Issue 9, 1888”. 2016年4月30日閲覧。
  5. ^ George J. Binczewski (1995). “The Point of a Monument: A History of the Aluminum Cap of the Washington Monument”. JOM 47 (11): 20–25. Bibcode 1995JOM....47k..20B. doi:10.1007/BF03221302. http://www.tms.org/pubs/journals/JOM/9511/Binczewski-9511.html. 
  6. ^ 岩崎廣和 (2014). “認定化学遺産 第028号 日本初のアルミニウム生産の工業化 電気の原料化と国産技術の振興を理念に”. 化学と工業 67 (7): 599. 
  7. ^ アルミニウムの歴史”. 日本アルミニウム協会. 2016年4月30日閲覧。
  8. ^ 大澤直 (2015). 図解入門現場で役立つ金属材料の基本と仕組み. 秀和システムズ. p. 135. ISBN 4798043257. 
  9. ^ アルコア”. コトバンク. 朝日新聞社. 2016年4月30日閲覧。
  10. ^ 大澤直 (2010). 図解入門よくわかるアルミニウムの基本と仕組み. 秀和システムズ. p. 39. ISBN 4798043257. }}
  11. ^ Production of Aluminum: The Hall-Héroult Process”. National Historic Chemical Landmarks. American Chemical Society. 2014年2月21日閲覧。
  12. ^ Das, Subodh (2012). “Achieving Carbon Neutrality in the Global Aluminum Industry”. JOM 64 (2): 285–290. doi:10.1007/s11837-012-0237-0. ISSN 1047-4838. 

関連項目[編集]