アルミニウム

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索
マグネシウム アルミニウム ケイ素
B

Al

Ga
Element 1: 水素 (H), 非金属
Element 2: ヘリウム (He), 希ガス
Element 3: リチウム (Li), アルカリ金属
Element 4: ベリリウム (Be), 卑金属
Element 5: ホウ素 (B), 金属
Element 6: 炭素 (C), 非金属
Element 7: 窒素 (N), 非金属
Element 8: 酸素 (O), 非金属
Element 9: フッ素 (F), ハロゲン
Element 10: ネオン (Ne), 希ガス
Element 11: ナトリウム (Na), アルカリ金属
Element 12: マグネシウム (Mg), 卑金属
Element 13: アルミニウム (Al), 卑金属
Element 14: ケイ素 (Si), 金属
Element 15: リン (P), 非金属
Element 16: 硫黄 (S), 非金属
Element 17: 塩素 (Cl), ハロゲン
Element 18: アルゴン (Ar), 希ガス
Element 19: カリウム (K), アルカリ金属
Element 20: カルシウム (Ca), アルカリ土類金属
Element 21: スカンジウム (Sc), 遷移金属
Element 22: チタン (Ti), 遷移金属
Element 23: バナジウム (V), 遷移金属
Element 24: クロム (Cr), 遷移金属
Element 25: マンガン (Mn), 遷移金属
Element 26: 鉄 (Fe), 遷移金属
Element 27: コバルト (Co), 遷移金属
Element 28: ニッケル (Ni), 遷移金属
Element 29: 銅 (Cu), 遷移金属
Element 30: 亜鉛 (Zn), 卑金属
Element 31: ガリウム (Ga), 卑金属
Element 32: ゲルマニウム (Ge), 金属
Element 33: ヒ素 (As), 金属
Element 34: セレン (Se), 非金属
Element 35: 臭素 (Br), ハロゲン
Element 36: クリプトン (Kr), 希ガス
Element 37: ルビジウム (Rb), アルカリ金属
Element 38: ストロンチウム (Sr), アルカリ土類金属
Element 39: イットリウム (Y), 遷移金属
Element 40: ジルコニウム (Zr), 遷移金属
Element 41: ニオブ (Nb), 遷移金属
Element 42: モリブデン (Mo), 遷移金属
Element 43: テクネチウム (Tc), 遷移金属
Element 44: ルテニウム (Ru), 遷移金属
Element 45: ロジウム (Rh), 遷移金属
Element 46: パラジウム (Pd), 遷移金属
Element 47: 銀 (Ag), 遷移金属
Element 48: カドミウム (Cd), 卑金属
Element 49: インジウム (In), 卑金属
Element 50: スズ (Sn), 卑金属
Element 51: アンチモン (Sb), 金属
Element 52: テルル (Te), 金属
Element 53: ヨウ素 (I), ハロゲン
Element 54: キセノン (Xe), 希ガス
Element 55: セシウム (Cs), アルカリ金属
Element 56: バリウム (Ba), アルカリ土類金属
Element 57: ランタン (La), ランタノイド
Element 58: セリウム (Ce), ランタノイド
Element 59: プラセオジム (Pr), ランタノイド
Element 60: ネオジム (Nd), ランタノイド
Element 61: プロメチウム (Pm), ランタノイド
Element 62: サマリウム (Sm), ランタノイド
Element 63: ユウロピウム (Eu), ランタノイド
Element 64: ガドリニウム (Gd), ランタノイド
Element 65: テルビウム (Tb), ランタノイド
Element 66: ジスプロシウム (Dy), ランタノイド
Element 67: ホルミウム (Ho), ランタノイド
Element 68: エルビウム (Er), ランタノイド
Element 69: ツリウム (Tm), ランタノイド
Element 70: イッテルビウム (Yb), ランタノイド
Element 71: ルテチウム (Lu), ランタノイド
Element 72: ハフニウム (Hf), 遷移金属
Element 73: タンタル (Ta), 遷移金属
Element 74: タングステン (W), 遷移金属
Element 75: レニウム (Re), 遷移金属
Element 76: オスミウム (Os), 遷移金属
Element 77: イリジウム (Ir), 遷移金属
Element 78: 白金 (Pt), 遷移金属
Element 79: 金 (Au), 遷移金属
Element 80: 水銀 (Hg), 卑金属
Element 81: タリウム (Tl), 卑金属
Element 82: 鉛 (Pb), 卑金属
Element 83: ビスマス (Bi), 卑金属
Element 84: ポロニウム (Po), 金属
Element 85: アスタチン (At), ハロゲン
Element 86: ラドン (Rn), 希ガス
Element 87: フランシウム (Fr), アルカリ金属
Element 88: ラジウム (Ra), アルカリ土類金属
Element 89: アクチニウム (Ac), アクチノイド
Element 90: トリウム (Th), アクチノイド
Element 91: プロトアクチニウム (Pa), アクチノイド
Element 92: ウラン (U), アクチノイド
Element 93: ネプツニウム (Np), アクチノイド
Element 94: プルトニウム (Pu), アクチノイド
Element 95: アメリシウム (Am), アクチノイド
Element 96: キュリウム (Cm), アクチノイド
Element 97: バークリウム (Bk), アクチノイド
Element 98: カリホルニウム (Cf), アクチノイド
Element 99: アインスタイニウム (Es), アクチノイド
Element 100: フェルミウム (Fm), アクチノイド
Element 101: メンデレビウム (Md), アクチノイド
Element 102: ノーベリウム (No), アクチノイド
Element 103: ローレンシウム (Lr), アクチノイド
Element 104: ラザホージウム (Rf), 遷移金属
Element 105: ドブニウム (Db), 遷移金属
Element 106: シーボーギウム (Sg), 遷移金属
Element 107: ボーリウム (Bh), 遷移金属
Element 108: ハッシウム (Hs), 遷移金属
Element 109: マイトネリウム (Mt), 遷移金属
Element 110: ダームスタチウム (Ds), 遷移金属
Element 111: レントゲニウム (Rg), 遷移金属
Element 112: コペルニシウム (Cn), 卑金属
Element 113: ウンウントリウム (Uut), 卑金属
Element 114: フレロビウム (Fl), 卑金属
Element 115: ウンウンペンチウム (Uup), 卑金属
Element 116: リバモリウム (Lv), 卑金属
Element 117: ウンウンセプチウム (Uus), ハロゲン
Element 118: ウンウンオクチウム (Uuo), 希ガス
Aluminium has a face-centered cubic crystal structure
13Al
外見

Aluminium-4.jpg
Aluminum Spectra.jpg
アルミニウムのスペクトル線
一般特性
名称, 記号, 番号 アルミニウム, Al, 13
分類 卑金属
, 周期, ブロック 13, 3, p
原子量 26.9815386(13) 
電子配置 [Ne] 3s2 3p1
電子殻 2, 8, 3(画像
物理特性
固体
密度室温付近) 2.70 g/cm3
融点での液体密度 2.375 g/cm3
融点 933.47 K, 660.32 °C, 1220.58 °F
沸点 2792 K, 2519 °C, 4566 °F
融解熱 10.71 kJ/mol
蒸発熱 294.0 kJ/mol
熱容量 (25 °C) 24.200 J/(mol·K)
蒸気圧
圧力 (Pa) 1 10 100 1 k 10 k 100 k
温度 (K) 1482 1632 1817 2054 2364 2790
原子特性
酸化数 3, 2, 1
(両性酸化物)
電気陰性度 1.61(ポーリングの値)
イオン化エネルギー
詳細
第1: 577.5 kJ/mol
第2: 1816.7 kJ/mol
第3: 2744.8 kJ/mol
原子半径 143 pm
共有結合半径 121±4 pm
ファンデルワールス半径 184 pm
その他
結晶構造 面心立方格子構造
磁性 常磁性[1]
電気抵抗率 (20 °C) 28.2 nΩ·m
熱伝導率 (300 K) 237 W/(m·K)
熱膨張率 (25 °C) 23.1 µm/(m·K)
音の伝わる速さ
(微細ロッド)
(r.t.) (rolled) 5,000 m/s
ヤング率 70 GPa
剛性率 26 GPa
体積弾性率 76 GPa
ポアソン比 0.35
モース硬度 2.75
ビッカース硬度 167 MPa
ブリネル硬度 245 MPa
CAS登録番号 7429-90-5
最安定同位体
詳細はアルミニウムの同位体を参照
同位体 NA 半減期 DM DE (MeV) DP
26Al trace 7.17×105 y β+ 1.17 26Mg
ε - 26Mg
γ 1.8086 -
27Al 100% 中性子14個で安定

アルミニウム: aluminium[2]: aluminium, aluminum)は、原子番号 13、原子量 26.98 の元素である。元素記号Al。銀に似た外見をもち軽いことから軽銀(けいぎん)と呼ばれることもある。アルミニウムをアルミと略すことも多い。

アルミ箔」、「アルミサッシ」、一円硬貨などアルミニウムを使用した日用品は数多く、非常に生活に身近な金属である。天然には化合物のかたちで広く分布し、ケイ素酸素とともに地殻を形成する主な元素の一つである。自然アルミニウム (Aluminium, Native Aluminium) というかたちで単体での産出も知られているが、稀である。

単体は銀白色の金属で、常温常圧で良い熱伝導性電気伝導性を持ち、加工性が良く、実用金属としては軽量であるため、広く用いられている。熱力学的に酸化されやすい金属ではあるが、空気中では表面にできた酸化皮膜により内部が保護されるため高い耐食性を持つ[3]

単体の性質[編集]

単体は常温常圧では良好な熱伝導性電気伝導性を持つ。融点 660.32 ℃、沸点 2519 ℃(別の報告もある)。密度は2.7 g/cm3で、金属としては軽量である。常温では面心立方格子構造が最も安定となる。アルカリに侵されやすいが、空気中では表面に酸化アルミニウムAl2O3の膜ができ、内部は侵されにくくなる。この保護現象は酸化物イオンO2-のイオン半径 (124 pm) とアルミニウムの原子半径 (143 pm) が近く、アルミニウムイオンAl3+ (68 pm) が酸化物の表面構造の隙間にすっぽり収まることが深く関係している。また濃硝酸に対しても表面に酸化被膜を生じ反応の進行は停止する(不動態[4][5]。陽極酸化による酸化被膜はアルマイトとも呼ばれる。

化学的性質[編集]

アルミニウムは両性金属で、にも塩基にも溶解する。塩基性の水溶液では、以下の反応によって還元されて水素を発生する。

\rm 6OH^- + 2Al + 6H_2O \longrightarrow 6OH^- + 2Al(OH)_3 + 3H_2

ただし、生成する水酸化アルミニウム溶解度積 ([Al3+][OH-]3) は1.92 × 10-32であり、ほとんどに溶解しない。したがって、薄い塩基では皮膜が発生して反応が止まる。しかし、強塩基条件では水酸化アルミニウムが次式によって水溶性のアルミン酸を形成するため、反応は表面のみでなく内部まで進行する。

\rm OH^- + Al(OH)_3 + 2H_2O \longrightarrow [Al(OH)_4 (H_2O)_2]^-

したがってアルミニウムと強塩基水溶液との反応はこれらの式を合わせて以下のようになる[5]\rm 2Al + 10H_2O + 2OH^- \longrightarrow 2[Al(OH)_4 (H_2O)_2]^- + 3H_2

機械的性質[編集]

アルミニウムはの約35%の比重であり、密度は (2.70 g/cm3) と低く金属の中でも軽量な方に属し、展性に富む。純アルミニウムは強度は低いが、ジュラルミンなどのアルミニウム合金はその軽量さ、加工のしやすさを活かしつつ強度を飛躍的に改善しているため、様々な製品に採用され、産業界で幅広く利用されている(「用途」を参照)。

アルミニウム合金は軟などと違い、応力がかかった時の変形に降伏現象を示さない。それは侵入型固溶体である炭素によるコットレル雰囲気を持つ合金とは違い、アルミニウム合金には置換型固溶体合金が多いことに起因する[6]。よって、構造設計等の計算を行う場合には、材料力学では降伏点の代わりに「0.2%耐力」が代わりに用いられる。「0.2%耐力」とは、応力をかけた際の永久ひずみが0.2%になる時の応力である[7]。こういった特性のために、アルミは押し出し成形摩擦攪拌接合に向いている。

生産[編集]

ボーキサイト。赤い色をしているのは、中に含まれている分のためである。

アルミニウムは、鉱物のボーキサイトを原料としてホール・エルー法で生産されるのが一般的である。ボーキサイトを水酸化ナトリウムで処理し、アルミナ(酸化アルミニウム)を取り出した後、氷晶石(ヘキサフルオロアルミン酸ナトリウム、Na3AlF6)と共に溶融し電気分解を行う。したがって、アルミニウムを作るには大量の電力が消費されることから「電気の缶詰」と呼ばれることもある。ちなみに、ホール・エルー法での純度は約98%なので、より高純度なアルミニウムを得るには三層電解法を使う。アルミニウム1トンを生産するために消費される材料およびエネルギーは以下の通りである[6][8]。なお、1トン当たりの電力使用量はで1200kWh、亜鉛で4000kWhであり[9]、アルミニウムの精錬には銅の約11倍、亜鉛の約3.5倍の電力が必要となる計算になる。

  • アルミナ 1.96トン(ボーキサイト 4トン)
  • 氷晶石 0.07トン
  • 炭素陽極 0.5トン
  • 電力 13000〜14000 kWh

電力価格が高いためコスト競争に弱い[8]日本国内のアルミニウム精錬事業は、オイルショック後採算困難になり、大部分は国外に拠点が移った[6]。日本国内で原石(ボーキサイト)から製品まで一貫生産を行っていたのは、自前の水力発電所により自家発電を行っているため低価格の電力が入手可能な日本軽金属(蒲原製造所・静岡市清水区)のみであったが、設備の老朽化と採算性の理由で2014年3月で閉鎖となった[10]

ボーキサイトからアルミニウムを精練するのに比し、アルミニウム屑からリサイクルして地金を作る方がコストやエネルギーが少なく済む。そのため、回収された空き缶等をリサイクル原料とし、電気炉等を用いる形態で再生するケースは徐々に増えている。アルミニウム屑を溶解するにあたっても融点が約660 °Cなどの主要金属の中では低い方なので少ないエネルギーで行うことができる。ボーキサイトからアルミニウム地金を生産するのに比べ、アルミ缶からアルミニウム地金を生産するのはわずか3%の電力消費で済む[11]。こうした利点があるため、アルミニウムは日本国内において最もリサイクル化が進んでいる金属であり、アルミ缶のリサイクル率は94.7%(平成24年度)にも達する[12]。こうしたことから、アルミニウムはしばしば「リサイクルの優等生」や「リサイクルの王様」と表現される。

順位 アルミニウム生産量
(千トン)
 世界合計 49,300[13]
1 中華人民共和国の旗 中国 23,300[13]
2 ロシアの旗 ロシア 3,500[13]
3 カナダの旗 カナダ 2,940[13]
4 アラブ首長国連邦の旗 アラブ首長国連邦 2,400[13]
5 インドの旗 インド 2,100[13]
6 アメリカ合衆国の旗 アメリカ 1,720[13]
7 オーストラリアの旗 オーストラリア 1,680[13]
8 ノルウェーの旗 ノルウェー 1,200[13]
9 ブラジルの旗 ブラジル 960[13]
10 バーレーンの旗 バーレーン 930[13]
11 アイスランドの旗 アイスランド 810[13]
12 南アフリカ共和国の旗 南アフリカ 735[13]
13 カタールの旗 カタール 610[13]
14 モザンビークの旗 モザンビーク 560[13]
15 サウジアラビアの旗 サウジアラビア 500[13]
15 ドイツの旗 ドイツ 500[13]
17 アルゼンチンの旗 アルゼンチン 425
 その他 4,440[13]

アルミニウムの生産量は2014年時点で4930万トンに及ぶ。中国が約40%を生産し、これにロシアカナダを加えた3カ国で生産量の過半数を占める。中国、ロシアはボーキサイト原産国でもある。他のボーキサイト原産国であるアメリカオーストラリアブラジルインドも世界生産量のシェア10位以内に含まれる。一方で、ボーキサイトの世界4位の生産国であるギニアや同第5位のジャマイカでまったくアルミニウムが生産されていないように、ボーキサイトの生産とアルミニウムの精練工場との間にはそれほど強い関連性はない。

これに対し、電力供給とアルミニウム精錬工場との間には強い相関性がある。アルミニウムは精錬に非常に多くの電力を消費するため、ボーキサイトからの精練は電力の安い国で行われる傾向が強い。アラブ首長国連邦カタールは豊富な石油を元にした火力発電で、またカナダノルウェーは地形を生かした水力発電で、アイスランドは水力発電と地熱発電によっていずれも電力が安価であるため、アルミニウムの大生産国となっている。14位のモザンビークは、カボラバッサダムの豊富な電力に目を付けたBHPビリトン三菱商事が精錬会社としてモザール社を設立し、2000年に工場が稼働し始めたことで大生産国となった。ここで精錬されたアルミニウムはモザンビークの総輸出額の50%を占め[14]、モザンビークの基幹産業として同国の経済成長を支えている。

アルミニウムの消費量も中国が飛びぬけて多く、2014年には2406万トンを消費して、全世界生産量5005万トンのほぼ半分を消費している。消費量は次いで米国が多く、さらにドイツ、日本と続く[15]

アルミニウム生産企業としては、カナダリオ・ティント・アルキャン、ロシアのルサール(ロシア・アルミニウム)、アメリカのアルコア、中国の中国アルミニウムなどが特に大きな生産企業である。

電力を必要としない生産方法[編集]

アルミニウムは電気分解以外の手法でも製造が可能である。例えばアルミナを2000℃以下で炭素と反応させ、炭化アルミニウムを生成させる。 これを2200℃以上の高温部へ移動させ、今度はアルミナと反応させて金属アルミニウムと一酸化炭素に分離させる。[16]

化学式としては以下のとおりである。

\rm 2Al_2O_3 + 9C \longrightarrow 4Al_4C_3 + 6CO

\rm Al_4C_3 + Al_2O_3 \longrightarrow 6Al + 3CO

2つ目の反応では逆反応が起こらないように過剰な炭素が必要である。生成されたアルミニウムは一部揮発して反応ガス成分に含まれるが、大半はスラグの上層に液体で単離する。

一方、アルミニウムの純度をあげる精錬工程は、電力を消費する三層電解法に代わり電力を使用しない分別結晶法を採用することが可能である。粗製アルミニウム金属を融解し、これを局所的に冷却すると、純度の高いアルミニウムが初晶として晶出する。シリコン単結晶の引き上げ処理と原理的には同じである。この方法によって得られる精製アルミニウムの純度は99.98 - 99.996%であり、三層電解法に迫る純度を得られる。[17]

用途[編集]

1円硬貨。純アルミニウムである
アルミホイル
アルミホイル製のカップ

アルミニウムは金属の中では軽量であるために利用しやすく、また、軟らかくて展性も高いなど加工し易い性質を持っており、さらに表面にできる酸化皮膜のためにイオン化傾向が大きい割には耐食性もあることから、一円硬貨アルミ箔、缶(アルミ缶)、外構/エクステリア、建築物の外壁、道路標識、ガソリンエンジンシリンダーブロック自転車フレームリム、パソコンや家電製品の筐体など、様々な用途に使用されている。ただしたいていはアルミニウム合金としての利用であり、1円硬貨のようなアルミニウム100%のものはむしろ稀な存在である。

有名な合金としてはジュラルミンが挙げられる。ジュラルミンは航空機材料などに用いられているが、金属疲労に弱く、腐食もしやすいという欠点を持つため、航空機などでは十分な点検体制を取ることが求められている。また、鉄道車両でも加工性が良く、軽量であることから、新幹線電車を始めとして特急型電車や通勤型電車などでアルミ車体の採用例も多い。なお、一時期自動車も航空機材料にならうかたちでアルミ化が進んだが、費用対効果を両立させるため、現在はアルミではなくハイテン材料(高張力鋼)の適用が進みつつある。また、炭素繊維の適用も始まっている[18]

窓枠にもアルミが使われている(アルミサッシ)が、近年は断熱性の問題から樹脂サッシや木製サッシが増えている[19]

高圧送電線にもアルミニウム線が使用される。に比べ単位体積あたりの電気伝導度は劣るが、密度が低いため断面積を大きく取る(太くする)ことができ、かつ軽いので、単位質量当りの電気伝導度はむしろ銅を上回り、かつ材料費はほぼ拮抗する。このため、支柱(送電鉄塔)のスパンが大きくなる高圧送電線の材料として有利である。

熱伝導性にも優れ、調理器具にアルミニウム合金がよく利用される。熱伝導度についても銅に劣るが、銅よりも安価であるため広く使われる[5]

真性半導体であるケイ素に微量のアルミニウムを添加することにより、P型半導体が得られる。

俗に「銀ペン」とも呼ばれる、銀色塗料には、アルミニウムの微粉末が顔料として加えられている。耐食性があるため、橋梁などの建築物によく使われた。

2014年度において、日本のアルミニウム用途で最も大きかった用途は輸送用機械の製造であり、40.1%を占める。次いでアルミサッシなどの建築用途が12.9%、アルミ缶やアルミ箔などの容器包装用途が10.6%を占め、この3分野が主なアルミニウムの用途であるといえる[20]

アルミニウム粉[編集]

粉末になったアルミニウムは可燃物であり、粉塵爆発を起こす場合がある。アルミニウム粉は燃焼熱が大きく、燃焼するときにガスを生じないため熱が集積して高温となり、強い白色の光を発する。これを利用して火薬類に発熱剤として添加される。スペースシャトルの固体燃料補助ロケットでも燃料として使用された。アルミニウム粉の性質は表面積の大きさによって左右されるため、等級は粒度ではなく重量当たりの表面積を示す水面拡散面積で表示される場合が多い。粒度で表示されるような粒の大きい物は粒状アルミニウム粉(アトマイズドアルミニウム粉)と呼んで区別することが多い。

スラリー爆薬などの水湿状態の火薬に混ぜるとアルミニウムの表面で以下のような反応が起きて発熱し水素が発生する。このため、アルミニウム粉の火災には水をかける事は禁忌とされている。

\rm 2Al + 6H_2O \longrightarrow 2Al(OH)_3 + 3H_2

アルミニウム粉末は塗料に混ぜて使う場合もある。また、指紋の検出(主に警察の鑑識課による捜査活動)などでアルミニウムの粉を使用することもある。

アルミニウム粉と酸化鉄(III)との混合物はテルミットと呼ばれ、マグネシウムリボンで着火すると激しく反応し、酸化アルミニウムおよび溶融鉄を生じる。この反応はの溶接にも使われているテルミット反応である。

日本の消防法では、150 µmの網ふるいを通過する量が50%を超えるアルミニウム粉第2類危険物と定めている。

人体への影響[編集]

人体へは摂取しても吸収される量は微量で、ほとんどはそのまま排出される。アルミニウムが体内でどのような役割を果たしているかは、まだよく分かっていない。人工透析に水道水を用いていた時代に、水道水中の微量のアルミニウムを原因とする透析脳症が発生した。そこから「アルミニウムがアルツハイマー病を引き起こす」という主張もなされたが、透析脳症と異なりアルツハイマー病患者の脳のアルミニウム蓄積量は患者以外と変わらず、腎臓が正常に機能しアルミニウムイオンを排出することのできる成人が通常の食生活で経口摂取するアルミニウムによりアルツハイマー病を患うという根拠は乏しいとされている[21]

植物への影響[編集]

アルミニウムは長石および粘土鉱物などとして普遍的に存在するため、地殻を構成する元素としては酸素珪素に次いで3番目に多い(クラーク数:7.56%、重量比)。工業的に多彩な用途が見出される一方、酸性土壌中のアルミニウム含量は、植物の成長に影響する重要な要素である。農業園芸における人工的な栽培環境では中性付近に調整された土壌を用いる場合が多いが、それでも有害なアルミニウムイオン (Al3+) がの伸長成長を阻害する事が知られている。

作用機序[編集]

土壌中のアルミニウムは、pH が5.0を下回ると急激にイオン化して溶解度が高まり、pH 3.5ではほぼ完全に溶存体となる。水溶化したアルミニウムイオンが農作物その他の植物に及ぼす害として、以下のようなもの知られている。

  • 肥料として土壌に添加したリン酸と結合し、難溶性の塩を形成する。結果として施肥効率が低下する。
  • 根の成長阻害を引き起こす。アルミニウムイオンは根の細胞の細胞壁アポプラスト領域へ結合し、種々の応答反応を引き起こす。応答反応としてはβ-1,3グルカンであるカロースの分泌などが知られるが、成長阻害の具体的なメカニズムは分かっていない。

成長阻害に関する研究は今も進められているが、アルミニウムが活性酸素の発生を促し、脂質の過酸化やミトコンドリアの機能障害を引き起こすとする意見が有力である。

アルミニウム耐性植物[編集]

コムギトウモロコシアジサイソバなど一部の植物は、アルミニウム耐性を持つ(あるいは高アルミニウム環境にも適応し得る)事が知られている。アルミニウムを無毒化するメカニズムは様々であるが、一般にカルボン酸シュウ酸クエン酸リンゴ酸など)を中心とした有機酸でアルミニウムイオンをキレートし、水溶性の錯体を形成する機構によると言われている。

アルミニウム耐性に関与する遺伝子は最初にコムギにおいて発見された。耐性関連遺伝子はトウモロコシからも見つかっている。これらの植物においては単一の遺伝子によりアルミニウム耐性が実現されているが、全ての植物のアルミニウム耐性が同一の機構によるわけではないと考えられている。

アルミニウム耐性土壌菌[編集]

遺伝子組み換えによりアルミニウム耐性植物を作出する際、その遺伝子源として注目されているものに、土壌性のアルミニウム耐性菌がある。根粒菌として知られる Rhizobium もアルミニウム耐性菌の一種である。強酸性 (pH 3.0) 高アルミニウム条件にて選抜されてくる菌はほとんどが糸状菌であり、従ってアルミニウムの多い土壌ではこれらの生物が優占していると考えられる。以下はアルミニウム耐性菌を含むの一部である。

この節の参考文献[編集]

  • アルミニウム耐性土壌菌の選抜 金澤 晋二郎 PDF
  • 山本洋子 (2002). "アルミニウムによる根伸長阻害の分子機構". 根の研究 11 (4): 147–54.  PDF
  • Tashiro M, Fujimoto T, Suzuki T, Furihata K, Machinami T, Yoshimura E (2006). "Spectroscopic characterization of 2-isopropylmalic acid-aluminum(III) complex". J Inorg Biochem 100 (2): 201–5.  PMID 16384602
  • Ma JF, Hiradate S, Nomoto K, Iwashita T, Matsumoto H (1997). "Internal Detoxification Mechanism of Al in Hydrangea (Identification of Al Form in the Leaves)". Plant Physiol 113 (4): 1033–9.  PMID 12223659

化合物[編集]

合金についてはアルミニウム合金を参照。

歴史[編集]

古代エジプトではすでにアルミニウムの化合物であるミョウバンが知られており、染色剤や防水剤、消火剤、皮なめし剤、沈殿剤などとして広く利用されてきた。しかしミョウバンの中に金属が含まれているとは考えられていなかった。それを覆し、ミョウバンの中に金属が含まれていると1782年に初めて推測したのはフランスのアントワーヌ・ラヴォアジエであった。

  • 1807年 - イギリスハンフリー・デービーは水素気流中で融解アルミナ電気分解する手法でアルミニウムと鉄の合金を得た。鉄はアルミナの不純物によるものであった。合金からアルミナを生成できたため、何らかの未知の元素の存在が確認できたことになる。デービーはアルミニウムの硫酸塩であるミョウバンを表すラテン語の単語 Alumen から、未知の新元素を Alumium と名付けた。
  • 1825年 - デンマーク物理学者エルステッドが、塩化アルミニウムカリウムアマルガムにより還元し、世界で初めてアルミニウムの単離に成功した[22]。ただし水銀などの不純物が多かったとされる。カリウム還元剤としたため生産性は極端に低く、貴金属としての扱いを受けた。
  • 1827年 - ヴェーラー塩化アルミニウムカリウムで還元して純粋なアルミニウムを得たため[23]ヴェーラーをアルミニウムの発見者とすることもある。
  • 1846年 - フランスの科学者ドビーユがエルステッドの手法を改良し、カリウムの代わりにナトリウムを用いる還元法を開発した。生産コストを下げることに成功し、電解法も開発した。
  • 1855年 - ドビーユは粘土から電解法で生産したアルミニウムをパリ万国博覧会に展示した。出品タイトルは「粘土からの銀」であった。展示を見たナポレオン3世はドビーユに援助を始める。目的は甲騎兵の防具を改良するためであった。また、皇帝夫妻専用にアルミ製食器を作らせ、晩餐会では銀製食器を使う来賓の前でこのアルミ食器を自慢して食事をした。(詳細は「ナポレオン3世とアルミニウム製品」も参照)。生産には成功したものの製法はいまだ未熟であったため、当時のアルミニウムは非常に製錬コストが高く高価なものであった。
  • 1886年 - アメリカチャールズ・マーティン・ホールとフランスのポール・エルーが、アルミナ氷晶石を用いた融解塩電解法をそれぞれ独自に発明した[24]ホール・エルー法)。この方法はアルミ精錬法として唯一のものであり、現在に至るまで使用されている。この発明によってアルミニウムの工業的生産が可能になり、アルミニウムは金属として実用化された。
  • 1888年 - オーストリアのカール・ヨーゼフ・バイヤーが、ボーキサイトから高純度のアルミナを効率的に製造する方法を発明した(バイヤー法)。
  • 19世紀後半 - 電気精錬の手法が進歩するが、肝心の発電、送電技術が未熟であり、生産性は依然として低いままであった。
  • 1903年 - ドイツのデュレンにおいて、アルフレート・ヴィルムがジュラルミンを発明する。この発明によってアルミニウムの用途は一気に広がり、主要工業材料としての地位を確立した。
  • 20世紀中〜後半 - 大規模で効率的な発電所の建設が可能になるとともに、送電システムが確立された。大規模な電気精錬が行えるようになり、大量生産が可能となった。

同位体[編集]

物質[編集]

アルミ製品[編集]

脚注[編集]

[ヘルプ]
  1. ^ Magnetic susceptibility of the elements and inorganic compounds, in Handbook of Chemistry and Physics 81st edition, CRC press.
  2. ^ http://www.encyclo.co.uk/webster/A/64
  3. ^ 『理化学辞典』第5版、岩波書店
  4. ^ 『化学大辞典』 共立出版、1993年
  5. ^ a b c Geoff Rayner-Canham, Tina Overton 『レイナーキャナム 無機化学(原著第4版)』 西原寛・高木繁・森山広思訳、p.193-195、2009年、東京化学同人、ISBN 978-4-8079-0684-0
  6. ^ a b c 西川精一 『新版金属工学入門』 アグネ技術センター、2001年
  7. ^ JIKO. 8.応力ひずみ線図 材料力学. 
  8. ^ a b 亀山直人 『電気化学の理論と応用』 丸善、1955年
  9. ^ 「非鉄金属業界大研究」南正明 p88 産学社 2008年8月31日初版第1刷
  10. ^ 日軽金、アルミ製錬撤退 国内唯一の拠点を3月末で閉鎖 日経新聞 2014年3月14日
  11. ^ リサイクルについて アルミ缶リサイクル協会 2015年8月28日閲覧
  12. ^ 「商社のとりくみ 金属(アルミ)のリサイクル」 日本貿易会 2015年6月19日閲覧
  13. ^ a b c d e f g h i j k l m n o p q r http://minerals.usgs.gov/minerals/pubs/commodity/aluminum/mcs-2015-alumi.pdf 2014年のデータ 2015年5月27日閲覧
  14. ^ 「モザンビークにおけるアルミニウム製錬事業 アルミ事業と地域の発展」 三菱商事 2015年6月19日閲覧
  15. ^ 「世界のアルミ産業」 日本アルミ協会 2015年6月19日閲覧
  16. ^ アルミナの炭素熱還元によるアルミニウムの製造方法及び反応装置(ekouhou.net)
  17. ^ 高純度アルミニウム製造法(日本軽金属)
  18. ^ ついに量産車へ、炭素繊維「鉄並み価格」視野で経済圏拡大 日本経済新聞 2014年11月19日
  19. ^ 低い断熱性なぜ放置、世界に遅れる「窓」後進国ニッポン 日本経済新聞 2014年11月7日
  20. ^ 「用途別需要」 日本アルミ協会 2015年6月19日閲覧
  21. ^ 「アルミニウムと健康」連絡協議会
  22. ^ 西川精一 『新版金属工学入門』p344 アグネ技術センター、2001年
  23. ^ 西川精一 『新版金属工学入門』p344 アグネ技術センター、2001年
  24. ^ 大澤直 『金属のおはなし』p113  日本規格協会(原著2006年1月25日)、第1版第1刷。ISBN 4542902757

関連項目[編集]

外部リンク[編集]

  1. ^ アルミニウムとアルツハイマー病の関連情報 国立健康・栄養研究所