「ミューズ細胞」の版間の差分

出典: フリー百科事典『ウィキペディア(Wikipedia)』
削除された内容 追加された内容
Muse2000 (会話 | 投稿記録)
マウス精巣への移植までを修正
タグ: サイズの大幅な増減 ビジュアルエディター
Muse2000 (会話 | 投稿記録)
記事の最後まで大幅に修正
タグ: サイズの大幅な増減 ビジュアルエディター
1行目: 1行目:
'''ミューズ細胞'''(ミューズさいぼう、{{lang-en-short|Muse cell; '''Mu'''lti-lineage differentiating '''S'''tress '''E'''nduring cell}})は生体に内在する非腫瘍性の多能性幹細胞であり、ほぼすべての組織の結合組織や骨髄、末梢血に存在している<ref name=":9">{{Cite journal|last=Kuroda|first=Yasumasa|last2=Kitada|first2=Masaaki|last3=Wakao|first3=Shohei|last4=Nishikawa|first4=Kouki|last5=Tanimura|first5=Yukihiro|last6=Makinoshima|first6=Hideki|last7=Goda|first7=Makoto|last8=Akashi|first8=Hideo|last9=Inutsuka|first9=Ayumu|date=2010-05-11|title=Unique multipotent cells in adult human mesenchymal cell populations|url=https://www.ncbi.nlm.nih.gov/pubmed/20421459|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=107|issue=19|pages=8639–8643|doi=10.1073/pnas.0911647107|issn=1091-6490|pmid=20421459|pmc=PMC2889306}}</ref><ref name=":10">{{Cite journal|last=Wakao|first=Shohei|last2=Kitada|first2=Masaaki|last3=Kuroda|first3=Yasumasa|last4=Shigemoto|first4=Taeko|last5=Matsuse|first5=Dai|last6=Akashi|first6=Hideo|last7=Tanimura|first7=Yukihiro|last8=Tsuchiyama|first8=Kenichiro|last9=Kikuchi|first9=Tomohiko|date=2011-06-14|title=Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts|url=https://www.ncbi.nlm.nih.gov/pubmed/21628574|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=108|issue=24|pages=9875–9880|doi=10.1073/pnas.1100816108|issn=1091-6490|pmid=21628574|pmc=PMC3116385}}</ref><ref name=":11">{{Cite journal|last=Dezawa|first=Mari|date=2016|title=Muse Cells Provide the Pluripotency of Mesenchymal Stem Cells: Direct Contribution of Muse Cells to Tissue Regeneration|url=https://www.ncbi.nlm.nih.gov/pubmed/26884346|journal=Cell Transplantation|volume=25|issue=5|pages=849–861|doi=10.3727/096368916X690881|issn=1555-3892|pmid=26884346}}</ref><ref name=":12">{{Cite journal|last=Hori|first=Emiko|last2=Hayakawa|first2=Yumiko|last3=Hayashi|first3=Tomohide|last4=Hori|first4=Satoshi|last5=Okamoto|first5=Soushi|last6=Shibata|first6=Takashi|last7=Kubo|first7=Michiya|last8=Horie|first8=Yukio|last9=Sasahara|first9=Masakiyo|date=2016-6|title=Mobilization of Pluripotent Multilineage-Differentiating Stress-Enduring Cells in Ischemic Stroke|url=https://www.ncbi.nlm.nih.gov/pubmed/27019988|journal=Journal of Stroke and Cerebrovascular Diseases: The Official Journal of National Stroke Association|volume=25|issue=6|pages=1473–1481|doi=10.1016/j.jstrokecerebrovasdis.2015.12.033|issn=1532-8511|pmid=27019988}}</ref>。ヒト線維芽細胞やヒト骨髄間葉系細胞、脂肪由来幹細胞などの市販の間葉系細胞からも単離することができ、自発的に、またはサイトカインの誘導により単細胞から体を構成する要素である外胚葉系、中胚葉系、内胚葉系の細胞に分化することができる<ref>{{Cite journal|last=Kuroda|first=Yasumasa|last2=Wakao|first2=Shohei|last3=Kitada|first3=Masaaki|last4=Murakami|first4=Toru|last5=Nojima|first5=Makoto|last6=Dezawa|first6=Mari|date=2013|title=Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells|url=https://www.ncbi.nlm.nih.gov/pubmed/23787896|journal=Nature Protocols|volume=8|issue=7|pages=1391–1415|doi=10.1038/nprot.2013.076|issn=1750-2799|pmid=23787896}}</ref><ref name=":13">{{Cite journal|last=Ogura|first=Fumitaka|last2=Wakao|first2=Shohei|last3=Kuroda|first3=Yasumasa|last4=Tsuchiyama|first4=Kenichiro|last5=Bagheri|first5=Mozhdeh|last6=Heneidi|first6=Saleh|last7=Chazenbalk|first7=Gregorio|last8=Aiba|first8=Setsuya|last9=Dezawa|first9=Mari|date=2014-04-01|title=Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine|url=https://www.ncbi.nlm.nih.gov/pubmed/24256547|journal=Stem Cells and Development|volume=23|issue=7|pages=717–728|doi=10.1089/scd.2013.0473|issn=1557-8534|pmid=24256547}}</ref><ref>{{Cite journal|last=Heneidi|first=Saleh|last2=Simerman|first2=Ariel A.|last3=Keller|first3=Erica|last4=Singh|first4=Prapti|last5=Li|first5=Xinmin|last6=Dumesic|first6=Daniel A.|last7=Chazenbalk|first7=Gregorio|date=2013|title=Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue|url=https://www.ncbi.nlm.nih.gov/pubmed/23755141|journal=PloS One|volume=8|issue=6|pages=e64752|doi=10.1371/journal.pone.0064752|issn=1932-6203|pmid=23755141|pmc=PMC3673968}}</ref>。さらに、この3胚葉性の分化能は自己複製可能である。多能性幹細胞の関連遺伝子の発現を認めるが、腫瘍性に関連する遺伝子は体細胞レベルと同等で低く、テロメラーゼ活性も低く抑えられているため、無限増殖を行わない。従ってミューズ細胞は生体に移植されても腫瘍形成の危険が極めて低い。ミューズ細胞は2010年に東北大学の出澤真理教授のグループによってはじめて発見・報告された<ref name=":9" />。2018年1月には三菱ケミカルホールディングスグループの傘下の株式会社生命科学インスティテュートが急性心筋梗塞患者を対象とした第一相治験を開始している<ref>{{Cite web|url=http://www.nature.com/nature/outlook/regenerative-medicine/pdf/Clio.pdf|title=Development of Muse cell therapy for KAITEKI society|accessdate=2018-07-24|publisher=}}</ref><ref>{{Cite web|url=http://www.lsii.co.jp/en/index.html|title=Life Science Institute, Inc.|accessdate=2018-07-23|website=www.lsii.co.jp|language=ja}}</ref>。
'''ミューズ細胞'''(ミューズさいぼう、{{lang-en-short|Muse cell; '''Mu'''lti-lineage differentiating '''S'''tress '''E'''nduring cell}})は生体に内在する非腫瘍性の多能性幹細胞であり、ほぼすべての組織の結合組織や骨髄、末梢血に存在している<ref name=":9">{{Cite journal|last=Kuroda|first=Yasumasa|last2=Kitada|first2=Masaaki|last3=Wakao|first3=Shohei|last4=Nishikawa|first4=Kouki|last5=Tanimura|first5=Yukihiro|last6=Makinoshima|first6=Hideki|last7=Goda|first7=Makoto|last8=Akashi|first8=Hideo|last9=Inutsuka|first9=Ayumu|date=2010-05-11|title=Unique multipotent cells in adult human mesenchymal cell populations|url=https://www.ncbi.nlm.nih.gov/pubmed/20421459|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=107|issue=19|pages=8639–8643|doi=10.1073/pnas.0911647107|issn=1091-6490|pmid=20421459|pmc=PMC2889306}}</ref><ref name=":10">{{Cite journal|last=Wakao|first=Shohei|last2=Kitada|first2=Masaaki|last3=Kuroda|first3=Yasumasa|last4=Shigemoto|first4=Taeko|last5=Matsuse|first5=Dai|last6=Akashi|first6=Hideo|last7=Tanimura|first7=Yukihiro|last8=Tsuchiyama|first8=Kenichiro|last9=Kikuchi|first9=Tomohiko|date=2011-06-14|title=Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts|url=https://www.ncbi.nlm.nih.gov/pubmed/21628574|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=108|issue=24|pages=9875–9880|doi=10.1073/pnas.1100816108|issn=1091-6490|pmid=21628574|pmc=PMC3116385}}</ref><ref name=":11">{{Cite journal|last=Dezawa|first=Mari|date=2016|title=Muse Cells Provide the Pluripotency of Mesenchymal Stem Cells: Direct Contribution of Muse Cells to Tissue Regeneration|url=https://www.ncbi.nlm.nih.gov/pubmed/26884346|journal=Cell Transplantation|volume=25|issue=5|pages=849–861|doi=10.3727/096368916X690881|issn=1555-3892|pmid=26884346}}</ref><ref name=":12">{{Cite journal|last=Hori|first=Emiko|last2=Hayakawa|first2=Yumiko|last3=Hayashi|first3=Tomohide|last4=Hori|first4=Satoshi|last5=Okamoto|first5=Soushi|last6=Shibata|first6=Takashi|last7=Kubo|first7=Michiya|last8=Horie|first8=Yukio|last9=Sasahara|first9=Masakiyo|date=2016-6|title=Mobilization of Pluripotent Multilineage-Differentiating Stress-Enduring Cells in Ischemic Stroke|url=https://www.ncbi.nlm.nih.gov/pubmed/27019988|journal=Journal of Stroke and Cerebrovascular Diseases: The Official Journal of National Stroke Association|volume=25|issue=6|pages=1473–1481|doi=10.1016/j.jstrokecerebrovasdis.2015.12.033|issn=1532-8511|pmid=27019988}}</ref>。ヒト線維芽細胞やヒト骨髄間葉系細胞、脂肪由来幹細胞などの市販の間葉系細胞からも単離することができ、自発的に、またはサイトカインの誘導により単細胞から体を構成する要素である外胚葉系、中胚葉系、内胚葉系の細胞に分化することができる<ref name=":0">{{Cite journal|last=Kuroda|first=Yasumasa|last2=Wakao|first2=Shohei|last3=Kitada|first3=Masaaki|last4=Murakami|first4=Toru|last5=Nojima|first5=Makoto|last6=Dezawa|first6=Mari|date=2013|title=Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells|url=https://www.ncbi.nlm.nih.gov/pubmed/23787896|journal=Nature Protocols|volume=8|issue=7|pages=1391–1415|doi=10.1038/nprot.2013.076|issn=1750-2799|pmid=23787896}}</ref><ref name=":13">{{Cite journal|last=Ogura|first=Fumitaka|last2=Wakao|first2=Shohei|last3=Kuroda|first3=Yasumasa|last4=Tsuchiyama|first4=Kenichiro|last5=Bagheri|first5=Mozhdeh|last6=Heneidi|first6=Saleh|last7=Chazenbalk|first7=Gregorio|last8=Aiba|first8=Setsuya|last9=Dezawa|first9=Mari|date=2014-04-01|title=Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine|url=https://www.ncbi.nlm.nih.gov/pubmed/24256547|journal=Stem Cells and Development|volume=23|issue=7|pages=717–728|doi=10.1089/scd.2013.0473|issn=1557-8534|pmid=24256547}}</ref><ref name=":1">{{Cite journal|last=Heneidi|first=Saleh|last2=Simerman|first2=Ariel A.|last3=Keller|first3=Erica|last4=Singh|first4=Prapti|last5=Li|first5=Xinmin|last6=Dumesic|first6=Daniel A.|last7=Chazenbalk|first7=Gregorio|date=2013|title=Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue|url=https://www.ncbi.nlm.nih.gov/pubmed/23755141|journal=PloS One|volume=8|issue=6|pages=e64752|doi=10.1371/journal.pone.0064752|issn=1932-6203|pmid=23755141|pmc=PMC3673968}}</ref>。さらに、この3胚葉性の分化能は自己複製可能である。多能性幹細胞の関連遺伝子の発現を認めるが、腫瘍性に関連する遺伝子は体細胞レベルと同等で低く、テロメラーゼ活性も低く抑えられているため、無限増殖を行わない。従ってミューズ細胞は生体に移植されても腫瘍形成の危険が極めて低い。ミューズ細胞は2010年に東北大学の出澤真理教授のグループによってはじめて発見・報告された<ref name=":9" />。2018年1月には三菱ケミカルホールディングスグループの傘下の株式会社生命科学インスティテュートが急性心筋梗塞患者を対象とした第一相治験を開始している<ref name=":2">{{Cite web|url=http://www.nature.com/nature/outlook/regenerative-medicine/pdf/Clio.pdf|title=Development of Muse cell therapy for KAITEKI society|accessdate=2018-07-24|publisher=}}</ref><ref name=":3">{{Cite web|url=http://www.lsii.co.jp/en/index.html|title=Life Science Institute, Inc.|accessdate=2018-07-23|website=www.lsii.co.jp|language=ja}}</ref>。


== 特徴 ==
=='''特徴'''==


* ストレス耐性を有する<ref>{{Cite journal|last=Alessio|first=Nicola|last2=Özcan|first2=Servet|last3=Tatsumi|first3=Kazuki|last4=Murat|first4=Ayşegül|last5=Peluso|first5=Gianfranco|last6=Dezawa|first6=Mari|last7=Galderisi|first7=Umberto|date=2017-01-02|title=The secretome of MUSE cells contains factors that may play a role in regulation of stemness, apoptosis and immunomodulation|url=https://www.ncbi.nlm.nih.gov/pubmed/27463232|journal=Cell Cycle (Georgetown, Tex.)|volume=16|issue=1|pages=33–44|doi=10.1080/15384101.2016.1211215|issn=1551-4005|pmid=27463232|pmc=PMC5270533}}</ref>。
* ストレス耐性を有する<ref>{{Cite journal|last=Alessio|first=Nicola|last2=Özcan|first2=Servet|last3=Tatsumi|first3=Kazuki|last4=Murat|first4=Ayşegül|last5=Peluso|first5=Gianfranco|last6=Dezawa|first6=Mari|last7=Galderisi|first7=Umberto|date=2017-01-02|title=The secretome of MUSE cells contains factors that may play a role in regulation of stemness, apoptosis and immunomodulation|url=https://www.ncbi.nlm.nih.gov/pubmed/27463232|journal=Cell Cycle (Georgetown, Tex.)|volume=16|issue=1|pages=33–44|doi=10.1080/15384101.2016.1211215|issn=1551-4005|pmid=27463232|pmc=PMC5270533}}</ref>。
25行目: 25行目:
* 従ってミューズ細胞を分離し、遺伝子操作などなくそのまま点滴で生体に投与することによって、様々な組織を修復させることができる。
* 従ってミューズ細胞を分離し、遺伝子操作などなくそのまま点滴で生体に投与することによって、様々な組織を修復させることができる。


== マーカー ==
=='''マーカー'''==
ミューズ細胞は未分化ヒトES細胞などの多能性幹細胞のマーカーとして知られているSSEA-3を発現している細胞として同定された<ref name=":9" /><ref>{{Cite journal|last=Thomson|first=J. A.|last2=Itskovitz-Eldor|first2=J.|last3=Shapiro|first3=S. S.|last4=Waknitz|first4=M. A.|last5=Swiergiel|first5=J. J.|last6=Marshall|first6=V. S.|last7=Jones|first7=J. M.|date=1998-11-06|title=Embryonic stem cell lines derived from human blastocysts|url=https://www.ncbi.nlm.nih.gov/pubmed/9804556|journal=Science (New York, N.Y.)|volume=282|issue=5391|pages=1145–1147|issn=0036-8075|pmid=9804556}}</ref>。またCD105、 CD90、 CD29などの一般的な間葉系幹細胞マーカーも発現しており、間葉系幹細胞と多能性幹細胞の両マーカーを同時に発現している細胞でもある<ref name=":9" />。抗SSEA-3抗体を使用して単離したミューズ細胞のサイズはおよそ直径13-15μmである。ミューズ細胞はCD34 (造血幹細胞、脂肪幹細胞、VSELsのマーカー)やCD117 (造血幹細胞のマーカー)、Snai1・Slug (共に皮膚前駆細胞のマーカー), CD271・Sox10 (共に神経堤由来幹細胞のマーカー)、NG2・CD146 (共に血管周囲細胞のマーカー)、CD31・von Willebrand factor (共に血管内皮前駆細胞のマーカー)をすべて発現していないことから、これまでに報告のあったどの幹細胞とも異なる幹細胞である<ref name=":9" /><ref>{{Cite journal|last=Wakao|first=Shohei|last2=Kitada|first2=Masaaki|last3=Dezawa|first3=Mari|date=2013-1|title=The elite and stochastic model for iPS cell generation: multilineage-differentiating stress enduring (Muse) cells are readily reprogrammable into iPS cells|url=https://www.ncbi.nlm.nih.gov/pubmed/22693162|journal=Cytometry. Part A: The Journal of the International Society for Analytical Cytology|volume=83|issue=1|pages=18–26|doi=10.1002/cyto.a.22069|issn=1552-4930|pmid=22693162}}</ref>。
ミューズ細胞は未分化ヒトES細胞などの多能性幹細胞のマーカーとして知られているSSEA-3を発現している細胞として同定された<ref name=":9" /><ref>{{Cite journal|last=Thomson|first=J. A.|last2=Itskovitz-Eldor|first2=J.|last3=Shapiro|first3=S. S.|last4=Waknitz|first4=M. A.|last5=Swiergiel|first5=J. J.|last6=Marshall|first6=V. S.|last7=Jones|first7=J. M.|date=1998-11-06|title=Embryonic stem cell lines derived from human blastocysts|url=https://www.ncbi.nlm.nih.gov/pubmed/9804556|journal=Science (New York, N.Y.)|volume=282|issue=5391|pages=1145–1147|issn=0036-8075|pmid=9804556}}</ref>。またCD105、 CD90、 CD29などの一般的な間葉系幹細胞マーカーも発現しており、間葉系幹細胞と多能性幹細胞の両マーカーを同時に発現している細胞でもある<ref name=":9" />。抗SSEA-3抗体を使用して単離したミューズ細胞のサイズはおよそ直径13-15μmである。ミューズ細胞はCD34 (造血幹細胞、脂肪幹細胞、VSELsのマーカー)やCD117 (造血幹細胞のマーカー)、Snai1・Slug (共に皮膚前駆細胞のマーカー), CD271・Sox10 (共に神経堤由来幹細胞のマーカー)、NG2・CD146 (共に血管周囲細胞のマーカー)、CD31・von Willebrand factor (共に血管内皮前駆細胞のマーカー)をすべて発現していないことから、これまでに報告のあったどの幹細胞とも異なる幹細胞である<ref name=":9" /><ref name=":4">{{Cite journal|last=Wakao|first=Shohei|last2=Kitada|first2=Masaaki|last3=Dezawa|first3=Mari|date=2013-1|title=The elite and stochastic model for iPS cell generation: multilineage-differentiating stress enduring (Muse) cells are readily reprogrammable into iPS cells|url=https://www.ncbi.nlm.nih.gov/pubmed/22693162|journal=Cytometry. Part A: The Journal of the International Society for Analytical Cytology|volume=83|issue=1|pages=18–26|doi=10.1002/cyto.a.22069|issn=1552-4930|pmid=22693162}}</ref>。


== '''ミューズ細胞の分化能''' ==
== '''ミューズ細胞の分化能''' ==
34行目: 34行目:


# 外胚葉系細胞 (nestin, NeuroD, Musashi, neurofilament, MAP-2, tyrosinase, MITF, gf100, TRP-1, DCT)<ref name=":10" /><ref name=":18">{{Cite journal|last=Tsuchiyama|first=Kenichiro|last2=Wakao|first2=Shohei|last3=Kuroda|first3=Yasumasa|last4=Ogura|first4=Fumitaka|last5=Nojima|first5=Makoto|last6=Sawaya|first6=Natsue|last7=Yamasaki|first7=Kenshi|last8=Aiba|first8=Setsuya|last9=Dezawa|first9=Mari|date=2013-10|title=Functional melanocytes are readily reprogrammable from multilineage-differentiating stress-enduring (muse) cells, distinct stem cells in human fibroblasts|url=https://www.ncbi.nlm.nih.gov/pubmed/23563197|journal=The Journal of Investigative Dermatology|volume=133|issue=10|pages=2425–2435|doi=10.1038/jid.2013.172|issn=1523-1747|pmid=23563197}}</ref>
# 外胚葉系細胞 (nestin, NeuroD, Musashi, neurofilament, MAP-2, tyrosinase, MITF, gf100, TRP-1, DCT)<ref name=":10" /><ref name=":18">{{Cite journal|last=Tsuchiyama|first=Kenichiro|last2=Wakao|first2=Shohei|last3=Kuroda|first3=Yasumasa|last4=Ogura|first4=Fumitaka|last5=Nojima|first5=Makoto|last6=Sawaya|first6=Natsue|last7=Yamasaki|first7=Kenshi|last8=Aiba|first8=Setsuya|last9=Dezawa|first9=Mari|date=2013-10|title=Functional melanocytes are readily reprogrammable from multilineage-differentiating stress-enduring (muse) cells, distinct stem cells in human fibroblasts|url=https://www.ncbi.nlm.nih.gov/pubmed/23563197|journal=The Journal of Investigative Dermatology|volume=133|issue=10|pages=2425–2435|doi=10.1038/jid.2013.172|issn=1523-1747|pmid=23563197}}</ref>
# 中胚葉系細胞 (brachyury, Nkx2-5, smooth muscle actin, osteocalcin, oil red-(+) lipid droplets, desmin, WT-1, EYA1, Podocin, Megsin, Troponin-1, Cx43, Tbx20, ANP, Mlc1a, Mlc1v, CD31, CD34, Foxc1, Klf2)<ref name=":9" /><ref name=":10" /><ref name=":19">{{Cite journal|last=Uchida|first=Nao|last2=Kushida|first2=Yoshihiro|last3=Kitada|first3=Masaaki|last4=Wakao|first4=Shohei|last5=Kumagai|first5=Naonori|last6=Kuroda|first6=Yasumasa|last7=Kondo|first7=Yoshiaki|last8=Hirohara|first8=Yukari|last9=Kure|first9=Shigeo|date=2017-10|title=Beneficial Effects of Systemically Administered Human Muse Cells in Adriamycin Nephropathy|url=https://www.ncbi.nlm.nih.gov/pubmed/28674043|journal=Journal of the American Society of Nephrology: JASN|volume=28|issue=10|pages=2946–2960|doi=10.1681/ASN.2016070775|issn=1533-3450|pmid=28674043|pmc=PMC5619953}}</ref><ref>{{Cite journal|last=Amin|first=Mohamed|last2=Kushida|first2=Yoshihiro|last3=Wakao|first3=Shohei|last4=Kitada|first4=Masaaki|last5=Tatsumi|first5=Kazuki|last6=Dezawa|first6=Mari|date=2018-2|title=Cardiotrophic Growth Factor-Driven Induction of Human Muse Cells Into Cardiomyocyte-Like Phenotype|url=https://www.ncbi.nlm.nih.gov/pubmed/29637816|journal=Cell Transplantation|volume=27|issue=2|pages=285–298|doi=10.1177/0963689717721514|issn=1555-3892|pmid=29637816|pmc=PMC5898685}}</ref>
# 中胚葉系細胞 (brachyury, Nkx2-5, smooth muscle actin, osteocalcin, oil red-(+) lipid droplets, desmin, WT-1, EYA1, Podocin, Megsin, Troponin-1, Cx43, Tbx20, ANP, Mlc1a, Mlc1v, CD31, CD34, Foxc1, Klf2)<ref name=":9" /><ref name=":10" /><ref name=":19">{{Cite journal|last=Uchida|first=Nao|last2=Kushida|first2=Yoshihiro|last3=Kitada|first3=Masaaki|last4=Wakao|first4=Shohei|last5=Kumagai|first5=Naonori|last6=Kuroda|first6=Yasumasa|last7=Kondo|first7=Yoshiaki|last8=Hirohara|first8=Yukari|last9=Kure|first9=Shigeo|date=2017-10|title=Beneficial Effects of Systemically Administered Human Muse Cells in Adriamycin Nephropathy|url=https://www.ncbi.nlm.nih.gov/pubmed/28674043|journal=Journal of the American Society of Nephrology: JASN|volume=28|issue=10|pages=2946–2960|doi=10.1681/ASN.2016070775|issn=1533-3450|pmid=28674043|pmc=PMC5619953}}</ref><ref name=":5">{{Cite journal|last=Amin|first=Mohamed|last2=Kushida|first2=Yoshihiro|last3=Wakao|first3=Shohei|last4=Kitada|first4=Masaaki|last5=Tatsumi|first5=Kazuki|last6=Dezawa|first6=Mari|date=2018-2|title=Cardiotrophic Growth Factor-Driven Induction of Human Muse Cells Into Cardiomyocyte-Like Phenotype|url=https://www.ncbi.nlm.nih.gov/pubmed/29637816|journal=Cell Transplantation|volume=27|issue=2|pages=285–298|doi=10.1177/0963689717721514|issn=1555-3892|pmid=29637816|pmc=PMC5898685}}</ref>
# 内胚葉系細胞 (GATA-6, α-fetoprotein, cytokeratin-7, albumin)<ref name=":9" /><ref name=":10" />
# 内胚葉系細胞 (GATA-6, α-fetoprotein, cytokeratin-7, albumin)<ref name=":9" /><ref name=":10" />


42行目: 42行目:
ヒトミューズ細胞が血中へ注入されると損傷部位へ遊走・生着した後に、自発的にその組織を構成する細胞へと分化し、組織修復へと寄与することが以下の損傷モデル動物で確認されている。
ヒトミューズ細胞が血中へ注入されると損傷部位へ遊走・生着した後に、自発的にその組織を構成する細胞へと分化し、組織修復へと寄与することが以下の損傷モデル動物で確認されている。


# 心筋梗塞モデル<ref>{{Cite journal|last=Yamada|first=Yoshihisa|last2=Wakao|first2=Shohei|last3=Kushida|first3=Yoshihiro|last4=Minatoguchi|first4=Shingo|last5=Mikami|first5=Atsushi|last6=Higashi|first6=Kenshi|last7=Baba|first7=Shinya|last8=Shigemoto|first8=Taeko|last9=Kuroda|first9=Yasumasa|date=2018-04-13|title=S1P-S1PR2 Axis Mediates Homing of Muse Cells Into Damaged Heart for Long-Lasting Tissue Repair and Functional Recovery After Acute Myocardial Infarction|url=https://www.ncbi.nlm.nih.gov/pubmed/29475983|journal=Circulation Research|volume=122|issue=8|pages=1069–1083|doi=10.1161/CIRCRESAHA.117.311648|issn=1524-4571|pmid=29475983}}</ref>
# 心筋梗塞モデル<ref name=":6">{{Cite journal|last=Yamada|first=Yoshihisa|last2=Wakao|first2=Shohei|last3=Kushida|first3=Yoshihiro|last4=Minatoguchi|first4=Shingo|last5=Mikami|first5=Atsushi|last6=Higashi|first6=Kenshi|last7=Baba|first7=Shinya|last8=Shigemoto|first8=Taeko|last9=Kuroda|first9=Yasumasa|date=2018-04-13|title=S1P-S1PR2 Axis Mediates Homing of Muse Cells Into Damaged Heart for Long-Lasting Tissue Repair and Functional Recovery After Acute Myocardial Infarction|url=https://www.ncbi.nlm.nih.gov/pubmed/29475983|journal=Circulation Research|volume=122|issue=8|pages=1069–1083|doi=10.1161/CIRCRESAHA.117.311648|issn=1524-4571|pmid=29475983}}</ref>
# 脳梗塞モデル<ref name=":16" /><ref>{{Cite journal|last=Uchida|first=Hiroki|last2=Niizuma|first2=Kuniyasu|last3=Kushida|first3=Yoshihiro|last4=Wakao|first4=Shohei|last5=Tominaga|first5=Teiji|last6=Borlongan|first6=Cesario V.|last7=Dezawa|first7=Mari|date=02 2017|title=Human Muse Cells Reconstruct Neuronal Circuitry in Subacute Lacunar Stroke Model|url=https://www.ncbi.nlm.nih.gov/pubmed/27999136|journal=Stroke|volume=48|issue=2|pages=428–435|doi=10.1161/STROKEAHA.116.014950|issn=1524-4628|pmid=27999136|pmc=PMC5262965}}</ref><ref>{{Cite journal|last=Yamauchi|first=Tomohiro|last2=Kuroda|first2=Yasumasa|last3=Morita|first3=Takahiro|last4=Shichinohe|first4=Hideo|last5=Houkin|first5=Kiyohiro|last6=Dezawa|first6=Mari|last7=Kuroda|first7=Satoshi|date=2015|title=Therapeutic effects of human multilineage-differentiating stress enduring (MUSE) cell transplantation into infarct brain of mice|url=https://www.ncbi.nlm.nih.gov/pubmed/25747577|journal=PloS One|volume=10|issue=3|pages=e0116009|doi=10.1371/journal.pone.0116009|issn=1932-6203|pmid=25747577|pmc=PMC4351985}}</ref>
# 脳梗塞モデル<ref name=":16" /><ref name=":7">{{Cite journal|last=Uchida|first=Hiroki|last2=Niizuma|first2=Kuniyasu|last3=Kushida|first3=Yoshihiro|last4=Wakao|first4=Shohei|last5=Tominaga|first5=Teiji|last6=Borlongan|first6=Cesario V.|last7=Dezawa|first7=Mari|date=02 2017|title=Human Muse Cells Reconstruct Neuronal Circuitry in Subacute Lacunar Stroke Model|url=https://www.ncbi.nlm.nih.gov/pubmed/27999136|journal=Stroke|volume=48|issue=2|pages=428–435|doi=10.1161/STROKEAHA.116.014950|issn=1524-4628|pmid=27999136|pmc=PMC5262965}}</ref><ref name=":8">{{Cite journal|last=Yamauchi|first=Tomohiro|last2=Kuroda|first2=Yasumasa|last3=Morita|first3=Takahiro|last4=Shichinohe|first4=Hideo|last5=Houkin|first5=Kiyohiro|last6=Dezawa|first6=Mari|last7=Kuroda|first7=Satoshi|date=2015|title=Therapeutic effects of human multilineage-differentiating stress enduring (MUSE) cell transplantation into infarct brain of mice|url=https://www.ncbi.nlm.nih.gov/pubmed/25747577|journal=PloS One|volume=10|issue=3|pages=e0116009|doi=10.1371/journal.pone.0116009|issn=1932-6203|pmid=25747577|pmc=PMC4351985}}</ref>
# 脳出血モデル<ref>{{Cite journal|last=Shimamura|first=Norihito|last2=Kakuta|first2=Kiyohide|last3=Wang|first3=Liang|last4=Naraoka|first4=Masato|last5=Uchida|first5=Hiroki|last6=Wakao|first6=Shohei|last7=Dezawa|first7=Mari|last8=Ohkuma|first8=Hiroki|date=02 2017|title=Neuro-regeneration therapy using human Muse cells is highly effective in a mouse intracerebral hemorrhage model|url=https://www.ncbi.nlm.nih.gov/pubmed/27817105|journal=Experimental Brain Research|volume=235|issue=2|pages=565–572|doi=10.1007/s00221-016-4818-y|issn=1432-1106|pmid=27817105}}</ref>
# 脳出血モデル<ref name=":20">{{Cite journal|last=Shimamura|first=Norihito|last2=Kakuta|first2=Kiyohide|last3=Wang|first3=Liang|last4=Naraoka|first4=Masato|last5=Uchida|first5=Hiroki|last6=Wakao|first6=Shohei|last7=Dezawa|first7=Mari|last8=Ohkuma|first8=Hiroki|date=02 2017|title=Neuro-regeneration therapy using human Muse cells is highly effective in a mouse intracerebral hemorrhage model|url=https://www.ncbi.nlm.nih.gov/pubmed/27817105|journal=Experimental Brain Research|volume=235|issue=2|pages=565–572|doi=10.1007/s00221-016-4818-y|issn=1432-1106|pmid=27817105}}</ref>
# 腎不全モデル<ref name=":19" />
# 腎不全モデル<ref name=":19" />
# 肝不全モデル<ref>{{Cite journal|last=Iseki|first=Masahiro|last2=Kushida|first2=Yoshihiro|last3=Wakao|first3=Shohei|last4=Akimoto|first4=Takahiro|last5=Mizuma|first5=Masamichi|last6=Motoi|first6=Fuyuhiko|last7=Asada|first7=Ryuta|last8=Shimizu|first8=Shinobu|last9=Unno|first9=Michiaki|date=05 09, 2017|title=Muse Cells, Nontumorigenic Pluripotent-Like Stem Cells, Have Liver Regeneration Capacity Through Specific Homing and Cell Replacement in a Mouse Model of Liver Fibrosis|url=https://www.ncbi.nlm.nih.gov/pubmed/27938474|journal=Cell Transplantation|volume=26|issue=5|pages=821–840|doi=10.3727/096368916X693662|issn=1555-3892|pmid=27938474|pmc=PMC5657714}}</ref>
# 肝不全モデル<ref name=":21">{{Cite journal|last=Iseki|first=Masahiro|last2=Kushida|first2=Yoshihiro|last3=Wakao|first3=Shohei|last4=Akimoto|first4=Takahiro|last5=Mizuma|first5=Masamichi|last6=Motoi|first6=Fuyuhiko|last7=Asada|first7=Ryuta|last8=Shimizu|first8=Shinobu|last9=Unno|first9=Michiaki|date=05 09, 2017|title=Muse Cells, Nontumorigenic Pluripotent-Like Stem Cells, Have Liver Regeneration Capacity Through Specific Homing and Cell Replacement in a Mouse Model of Liver Fibrosis|url=https://www.ncbi.nlm.nih.gov/pubmed/27938474|journal=Cell Transplantation|volume=26|issue=5|pages=821–840|doi=10.3727/096368916X693662|issn=1555-3892|pmid=27938474|pmc=PMC5657714}}</ref>
# 肝部分切除モデル<ref name=":15" />
# 肝部分切除モデル<ref name=":15" />
# 糖尿病性皮膚潰瘍モデル<ref name=":17" />
# 糖尿病性皮膚潰瘍モデル<ref name=":17" />
# 大動脈瘤<ref>{{Cite journal|last=Hosoyama|first=Katsuhiro|last2=Wakao|first2=Shohei|last3=Kushida|first3=Yoshihiro|last4=Ogura|first4=Fumitaka|last5=Maeda|first5=Kay|last6=Adachi|first6=Osamu|last7=Kawamoto|first7=Shunsuke|last8=Dezawa|first8=Mari|last9=Saiki|first9=Yoshikatsu|date=2018-6|title=Intravenously injected human multilineage-differentiating stress-enduring cells selectively engraft into mouse aortic aneurysms and attenuate dilatation by differentiating into multiple cell types|url=https://www.ncbi.nlm.nih.gov/pubmed/29559260|journal=The Journal of Thoracic and Cardiovascular Surgery|volume=155|issue=6|pages=2301–2313.e4|doi=10.1016/j.jtcvs.2018.01.098|issn=1097-685X|pmid=29559260}}</ref>
# 大動脈瘤<ref name=":22">{{Cite journal|last=Hosoyama|first=Katsuhiro|last2=Wakao|first2=Shohei|last3=Kushida|first3=Yoshihiro|last4=Ogura|first4=Fumitaka|last5=Maeda|first5=Kay|last6=Adachi|first6=Osamu|last7=Kawamoto|first7=Shunsuke|last8=Dezawa|first8=Mari|last9=Saiki|first9=Yoshikatsu|date=2018-6|title=Intravenously injected human multilineage-differentiating stress-enduring cells selectively engraft into mouse aortic aneurysms and attenuate dilatation by differentiating into multiple cell types|url=https://www.ncbi.nlm.nih.gov/pubmed/29559260|journal=The Journal of Thoracic and Cardiovascular Surgery|volume=155|issue=6|pages=2301–2313.e4|doi=10.1016/j.jtcvs.2018.01.098|issn=1097-685X|pmid=29559260}}</ref>
# 筋変性モデル<ref name=":9" />
# 筋変性モデル<ref name=":9" />
# 皮膚損傷モデル<ref name=":9" />
# 皮膚損傷モデル<ref name=":9" />


== 非腫瘍形成性 ==
=='''非腫瘍形成性'''==
=== 低テロメラーゼ活性 ===
=== 低テロメラーゼ活性 ===
ミューズ細胞の特徴として、腫瘍形成能の指標の一つであるテロメラーゼ活性が低いことが挙げられる。Hela細胞やiPS細胞ではこのテロメラーゼ活性が高いことが報告されているが、一方でミューズ細胞では線維芽細胞のような正常体細胞の活性と同程度である。このことはミューズ細胞が腫瘍形成能をもたない理由の一つである<ref name=":9" /><ref name=":13" /><ref name=":14" />。
ミューズ細胞の特徴として、腫瘍形成能の指標の一つであるテロメラーゼ活性が低いことが挙げられる。Hela細胞やiPS細胞ではこのテロメラーゼ活性が高いことが報告されているが、一方でミューズ細胞では線維芽細胞のような正常体細胞の活性と同程度である。このことはミューズ細胞が腫瘍形成能をもたない理由の一つである<ref name=":9" /><ref name=":13" /><ref name=":14" />。
63行目: 63行目:
幹細胞の腫瘍原性を調べる際に行われる免疫不全マウスの精巣内への移植実験において、ミューズ細胞は移植後6カ月経過してもテラトーマは形成されなかった<ref name=":9" /><ref name=":10" /><ref name=":13" /><ref name=":14" />。したがって、ミューズ細胞は多能性幹細胞でありながら腫瘍形成能を持たない細胞である<ref name=":9" />。同様の例として、特定条件下で培養されたエピブラスト幹細胞は''in vitro''で多能性を示す一方、マウス精巣内に移植してもテラトーマを形成しなかったとの報告がある<ref>{{Cite journal|last=Chou|first=Yu-Fen|last2=Chen|first2=Hsu-Hsin|last3=Eijpe|first3=Maureen|last4=Yabuuchi|first4=Akiko|last5=Chenoweth|first5=Joshua G.|last6=Tesar|first6=Paul|last7=Lu|first7=Jun|last8=McKay|first8=Ronald D. G.|last9=Geijsen|first9=Niels|date=2008-10-31|title=The growth factor environment defines distinct pluripotent ground states in novel blastocyst-derived stem cells|url=https://www.ncbi.nlm.nih.gov/pubmed/18984157|journal=Cell|volume=135|issue=3|pages=449–461|doi=10.1016/j.cell.2008.08.035|issn=1097-4172|pmid=18984157|pmc=PMC2767270}}</ref>。従ってテラトーマの形成はあくまでも腫瘍原性の確認とその場合の多能性の証明法の一つであり、そもそも多能性幹細胞が常にテラトーマを形成するわけではないことに留意する必要がある。
幹細胞の腫瘍原性を調べる際に行われる免疫不全マウスの精巣内への移植実験において、ミューズ細胞は移植後6カ月経過してもテラトーマは形成されなかった<ref name=":9" /><ref name=":10" /><ref name=":13" /><ref name=":14" />。したがって、ミューズ細胞は多能性幹細胞でありながら腫瘍形成能を持たない細胞である<ref name=":9" />。同様の例として、特定条件下で培養されたエピブラスト幹細胞は''in vitro''で多能性を示す一方、マウス精巣内に移植してもテラトーマを形成しなかったとの報告がある<ref>{{Cite journal|last=Chou|first=Yu-Fen|last2=Chen|first2=Hsu-Hsin|last3=Eijpe|first3=Maureen|last4=Yabuuchi|first4=Akiko|last5=Chenoweth|first5=Joshua G.|last6=Tesar|first6=Paul|last7=Lu|first7=Jun|last8=McKay|first8=Ronald D. G.|last9=Geijsen|first9=Niels|date=2008-10-31|title=The growth factor environment defines distinct pluripotent ground states in novel blastocyst-derived stem cells|url=https://www.ncbi.nlm.nih.gov/pubmed/18984157|journal=Cell|volume=135|issue=3|pages=449–461|doi=10.1016/j.cell.2008.08.035|issn=1097-4172|pmid=18984157|pmc=PMC2767270}}</ref>。従ってテラトーマの形成はあくまでも腫瘍原性の確認とその場合の多能性の証明法の一つであり、そもそも多能性幹細胞が常にテラトーマを形成するわけではないことに留意する必要がある。


==組織再生==
=='''組織修復'''==
ミューズ細胞は生体内で組織修復を担っている細胞である可能性がある。脳梗塞患者では、発症後24時間で末梢血中のミューズ細胞数が統計的有意差をもって増加することが報告されている<ref name=":12" />。心筋梗塞患者の末梢血中の内因性ミューズ細胞の動態解析では、発症急性期に血液中のミューズ細胞が増加した患者では半年後、心機能回復や心不全回避の傾向が見られた。一方、急性期に増加しなかった患者ではこれらの効果を示さない傾向が見られた<ref name=":23">{{Cite journal|last=Tanaka|first=Toshiki|last2=Nishigaki|first2=Kazuhiko|last3=Minatoguchi|first3=Shingo|last4=Nawa|first4=Takahide|last5=Yamada|first5=Yoshihisa|last6=Kanamori|first6=Hiromitsu|last7=Mikami|first7=Atsushi|last8=Ushikoshi|first8=Hiroaki|last9=Kawasaki|first9=Masanori|date=2018-01-25|title=Mobilized Muse Cells After Acute Myocardial Infarction Predict Cardiac Function and Remodeling in the Chronic Phase|url=https://www.ncbi.nlm.nih.gov/pubmed/28931784|journal=Circulation Journal: Official Journal of the Japanese Circulation Society|volume=82|issue=2|pages=561–571|doi=10.1253/circj.CJ-17-0552|issn=1347-4820|pmid=28931784}}</ref>。このことから、内因性のミューズ細胞は傷害を受けた臓器の修復に関わっていることが示唆されている。
ミューズ細胞は生体中で組織修復の機能を持つ。急性期創傷モデルの末梢血中に投与すると、ミューズ細胞は損傷部位に移行し、自発的に組織特異的な細胞へと分化して失われた細胞を補う。この現象は[[GFP]]標識されたヒトミューズ細胞を、急性肝炎、骨格筋変性、皮膚創傷<ref name="Kuroda">{{cite journal|author=Kuroda Y, Kitada M, Wakao S, Nishikawa K, Tanimura Y, Makinoshima H, Goda M, Akashi H, Inutsuka A, Niwa A, Shigemoto T, Nabeshima Y, Nakahata T, Nabeshima Y, Fujiyoshi Y, Dezawa M|year=2010|title=Unique multipotent cells in adult human mesenchymal cell populations|url=http://www.pnas.org/content/early/2010/04/23/0911647107|journal=Proc Natl Acad Sci U S A|volume=107|issue=19|pages=8639–43|bibcode=2010PNAS..107.8639K|doi=10.1073/pnas.0911647107|pmid=20421459|pmc=2889306}}</ref>、および脊髄損傷<ref name="WakaoCells">{{cite journal|author=Wakao S, Kuroda Y, Ogura F, Shigemoto T, Dezawa M|year=2012|title=Regenerative effects of mesenchymal stem cells: contribution of Muse cells, a novel pluripotent stem cell type that resides in mesenchymal cells|url=http://www.mdpi.com/2073-4409/1/4/1045|journal=Cells|volume=1|issue=4|pages=1045–1060|doi=10.3390/cells1041045}}</ref>などの免疫不全マウスに投与することにより示された。投与されたミューズ細胞は各組織と結合して、各々、ヒトアルブミン、抗トリプシン肝細胞、ヒト[[ディストロフィン]]発現細胞、[[サイトケラチン]]14発現細胞<ref name=Kuroda />、および[[ニューロフィラメント]]発現細胞<ref name=WakaoCells />へと分化した。


また実験的には、遺伝子導入やサイトカイン処理が施されていないミューズ細胞をそのまま静脈投与すると、損傷部位へと遊走・生着し、その組織に適した細胞へと自発的に分化して組織修復や機能回復をもたらすことが動物モデルで示されている。
ミューズ細胞はその単純さと効果から再生医療において大いに有用である。[[分化誘導]]や人による操作なしにミューズ細胞は末梢血中投与によって組織再生することができるため、臨床応用が期待されている<ref name=KurodaNature>{{cite journal |author=Kuroda Y, Wakao S, Kitada M, Murakami T, Nojima M, Dezawa M |title=Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells |journal=Nat Protoc |year=2013 |volume=8 |issue=7 |pages=1391-415 |url=http://www.nature.com/nprot/journal/v8/n7/full/nprot.2013.076.html |pmid=23787896 }}</ref>。各組織の再生に最適な条件については研究が必要である。


* 心筋梗塞モデル(TroponinI, alpha-actinin, Connexin43等を発現する心筋細胞)<ref name=":6" />
== 自己複製 ==
ミューズ細胞はその増殖活性、多能性マーカー発現、および正常な核型を保ったまま自己複製することができる<ref name=WakaoCells />。


* 劇症肝炎モデル&肝部分切除モデル (解毒酵素や糖代謝酵素を発現するalbumin・HepPar1陽性肝細胞へ分化)<ref name=":9" /><ref name=":15" /><ref name=":21" />
== 採集方法 ==
ミューズ細胞はいくつかの異なる方法で得ることができる。


* 腎不全モデル(糸球体を構成する細胞、すなわちWT-1, podocin陽性足細胞、Megsin陽性メサンギウム細胞、CD31, von Willebrand factor陽性血管内皮細胞)<ref name=":19" />
=== セルソーティング ===
SSEA-3陽性、ないしSSEA-3/CD105二重陽性を[[CD分類|指標]]とすることにより、ミューズ細胞は組織ないし市販の培養細胞から単離することができる。組織から直接単離される場合はSSEA-3およびCD105を指標とする<ref>{{Cite web |url=http://www.nedo.go.jp/news/press/AA5_100177.html |title=Muse細胞及び分離方法に関する基本的な特許が成立 |publisher=独立行政法人新エネルギー・産業技術総合開発機構 |date=2013-03-33|accessdate=2013-03-33}}</ref>が、培養間葉系細胞ではほぼすべての細胞がCD105を発現しているため、SSEA-3単独を指標とする。<ref>[https://www.jstage.jst.go.jp/article/fpj/145/6/145_299/_pdf 出典] www.jstage.jst.go.jpより2017年12月22日UTC5:31閲覧。</ref>


* 筋変性モデル (ジストロフィン発現細胞へ分化)<ref name=":9" />
===長時間トリプシン処理===
移植実験のように大規模にミューズ細胞を使用する場合、細胞に極度のストレスを与えることによりミューズ細胞を富化することができる。この手法により得られた細胞群はミューズ富化細胞集団と呼ばれる。ミューズ細胞の富化に最適な条件は、皮膚細胞には16時間、骨髄間葉系細胞には8時間の[[トリプシン]]処理である。<ref>[https://archive.is/7Hjfi 出典] webcache.googleusercontent.comからのアーカイブ 2017年12月22日 05:24:05 UTC閲覧。</ref>


* 大動脈瘤モデル(CD31,smooth muscle actin陽性の血管内皮細胞)<ref name=":22" />
===過酷細胞ストレス処理===
ミューズ細胞は脂肪吸引により得られる組織を強いストレスにさらすことによって、ストレス耐性の高いミューズ細胞以外の細胞を死滅させることによっても得られる。得られる細胞群は高い比率でミューズ細胞を含んでおり、さらなるセルソーティングの必要がない。ストレス条件としては、[[コラゲナーゼ]]での長時間処理、低温、血清除去、および低酸素状態などがある。その後、分解組織を遠心分離し、沈降物を[[PBS]]に再分散後、赤血球溶血培地で培養する。この方法で得られたミューズ細胞は[[脂肪由来幹細胞]]と区別することができる<ref name="Heneidi">{{cite journal|author=Heneidi S, Simerman AA, Keller E, Singh P, Li X, Dumesic DA, Chazenbalk G|year=2013|title=Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue|journal=PLoS One|volume=8|issue=6|pages=e64752|doi=10.1371/journal.pone.0064752|pmid=23755141|pmc=3673968}}</ref>。


また局所投与によっても同様に傷害部位へ遊走・生着し、組織に適した細胞に自発分化し、組織修復と機能回復をもたらすことが報告されている。
==その他の間葉系幹細胞との基本的な違い==
間葉系幹細胞には数パーセントのミューズ細胞が含まれてはいるが、ミューズ細胞とミューズ細胞以外の間葉系幹細胞との間には大きな違いがある。SSEA-3によりミューズ細胞とその他の細胞に分別すると、以下の違いが見られる。
*ミューズ細胞は浮遊培養で単一細胞から集塊を形成できるが、他の細胞にはできない。
*ミューズ細胞以外の細胞では多能性マーカーの発現が非常に低い<ref name=Kuroda />。
*ミューズ細胞以外の細胞は末梢血中投与で傷害組織に生着せず、組織再生にも寄与できない。


* 脳梗塞・脳出血モデル (NeuN・Calbindin・Synaptophysin等を発現し錐体路に組み込まれる神経細胞、およびGSTπ陽性オリゴデンドロサイトへの分化)<ref name=":16" /><ref name=":7" /><ref name=":8" /><ref name=":20" />
== 培養におけるミューズ細胞の分化 ==
様々なソースのミューズ細胞から多様な細胞への分化がみられる。


* 脊髄損傷モデル (ニューロフィラメント・MAP-2発現細胞へ分化)<ref name=":24">{{Cite journal|last=Wakao|first=Shohei|last2=Kuroda|first2=Yasumasa|last3=Ogura|first3=Fumitaka|last4=Shigemoto|first4=Taeko|last5=Dezawa|first5=Mari|date=2012-11-08|title=Regenerative Effects of Mesenchymal Stem Cells: Contribution of Muse Cells, a Novel Pluripotent Stem Cell Type that Resides in Mesenchymal Cells|url=https://www.ncbi.nlm.nih.gov/pubmed/24710542|journal=Cells|volume=1|issue=4|pages=1045–1060|doi=10.3390/cells1041045|issn=2073-4409|pmid=24710542|pmc=PMC3901150}}</ref>
=== 色素細胞(メラノサイト): ===
ヒト皮膚線維芽細胞由来のミューズ細胞から色素細胞の誘導が報告されている。Wnt3a, Stem cell factor, ET-3, basic fibroblast growth factor, linoleic acid, cholera toxin, L-ascorbic acid, 12-O-tetradecanoylphorbol 13-acetate, insulin, transferrin, selenium, dexamethasoneを組み合わせたサイトカイン刺激によってミューズ細胞はL-DOPA反応性を持つ色素細胞に分化する。誘導された細胞はメラニン産生能を持ち、三次元培養皮膚に導入されても色素細胞のマーカーを発現する。一方、元となるヒト皮膚線維芽細胞からミューズ細胞を除去した非ミューズ細胞群に同様の誘導を行っても分化は見られない<ref name="Tsuchiyama">{{cite journal|author=Tsuchiyama K, et al.|first2=S|first3=Y|first4=F|first5=M|first6=N|first7=K|first8=S|first9=M|year=2013|title=Functional melanocytes are readily reprogrammable from multilineage-differentiating stress-enduring (muse) cells, distinct stem cells in human fibroblasts|url=http://www.nature.com/jid/journal/v133/n10/full/jid2013172a.html|journal=J Invest Dermatol|volume=133|issue=10|pages=2425–35|doi=10.1038/jid.2013.172|pmid=23563197}}</ref><ref name=":2">J Dermatol Sci. 2017 Jun;86(3):198-205. doi: 10.1016/j.jdermsci.2017.03.001. Epub 2017 Mar 6.


* 皮膚損傷モデル・糖尿病性皮膚潰瘍(サイトケラチン14陽性角化細胞へ分化)<ref name=":9" /><ref name=":17" /><ref>{{Cite journal|last=Mineda|first=Kazuhide|last2=Feng|first2=Jingwei|last3=Ishimine|first3=Hisako|last4=Takada|first4=Hitomi|last5=Doi|first5=Kentaro|last6=Kuno|first6=Shinichiro|last7=Kinoshita|first7=Kahori|last8=Kanayama|first8=Koji|last9=Kato|first9=Harunosuke|date=2015-12|title=Therapeutic Potential of Human Adipose-Derived Stem/Stromal Cell Microspheroids Prepared by Three-Dimensional Culture in Non-Cross-Linked Hyaluronic Acid Gel|url=https://www.ncbi.nlm.nih.gov/pubmed/26494781|journal=Stem Cells Translational Medicine|volume=4|issue=12|pages=1511–1522|doi=10.5966/sctm.2015-0037|issn=2157-6564|pmid=26494781|pmc=PMC4675504}}</ref>
A quantitative analysis of multilineage-differentiating stress-enduring (Muse) cells in human adipose tissue and efficacy of melanocytes induction.


サイトカイン処理も人為的な遺伝子操作も必要なく、ただ血中に注入するだけで組織が修復できることは、再生医療での大きな利点である。現在、株式会社生命科学インスティテュートにより医薬品製造品質管理基準(GMP)および再生医療等製品に関わる規制要件(GCTP)を満たす細胞処理手順が確立されて、2018年1月より急性心筋梗塞患者を対象としたPhase 1の治験が開始されている<ref name=":2" /><ref name=":3" />。
Yamauchi T1, Yamasaki K2, Tsuchiyama K1, Koike S1, Aiba S1.


== '''基本的特徴''' ==
PMID:28292562 DOI:10.1016/j.jdermsci.2017.03.001
ミューズ細胞の持つ多能性 (多能性関連遺伝子の発現、3胚葉性細胞への分化、自己複製能)はヒト骨髄穿刺液から直接単離した細胞でも確認されており、培養操作により獲得したものではないことが示されている<ref name=":9" />。
</ref><ref name=":3">The potential of '''Muse''' cells for regenerative medicine of skin: procedures to reconstitute skin with '''Muse''' cell-derived keratinocytes, fibroblasts, and melanocytes.


'''生体に存在する'''
Yamauchi T, '''Yamasaki''' K, Tsuchiyama K, Koike S, '''Aiba''' S.


ミューズ細胞は各種臓器の結合組織や末梢血、骨髄にもともと存在している多能性幹細胞であり、骨髄中では単核球細胞のうち、およそ3000個に1個の割合で存在することが示されている。培養を経ずにSSEA-3を指標に直接骨髄液から単離したミューズ細胞は、多能性因子の発現、3胚葉性分化、自己複製を示す。この事から、ミューズ細胞の示す多能性はストレスやサイトカイン、人為的な遺伝子操作などによって誘導されたものではないと言える<ref name=":9" /><ref name=":10" /><ref name=":11" /><ref name=":12" /><ref name=":1" />。
J Invest Dermatol. 2017 Jul 20. pii: S0022-202X(17)31857-2. doi: 10.1016/j.jid.2017.06.021. [Epub ahead of print] No abstract available.


'''周囲の環境による二面性'''
PMID: 28736234
</ref>。


ミューズ細胞は結合組織中や骨髄内での接着環境、あるいは接着培養など、足場に接着できる状況では線維芽細胞様の形態を示すが、血中や浮遊培養などの浮遊環境に置かれることによって多能性因子の発現が顕著に亢進し、1細胞から増殖してES細胞様胚葉体を形成することが知られている<ref name=":9" /><ref name=":10" /><ref name=":21" />。
=== 角化細胞: ===
ヒト脂肪組織由来ミューズ細胞はゼラチンコートされた培養皿上で培養すると自発的に分化し、その中に角化細胞が含まれる。またミューズ細胞にBMP-4やレチノイン酸を投与して誘導をかけると角化細胞に分化する<ref name="Heneidi" /><ref name=":3" /><ref name=":2" />。


'''ES細胞の胚様体のようなクラスターの形成'''
=== 神経細胞: ===
ヒト骨髄由来あるいは脂肪組織由来ミューズ細胞をゼラチンコートされた培養皿上で培養すると自発的に分化し、その中に神経系マーカーを発現する細胞が含まれる<ref name="Kuroda" /><ref name="WakaoPNAS">{{cite journal|author=Wakao S, Kitada M, Kuroda Y, Shigemoto T, Matsuse D, Akashi H, Tanimura Y, Tsuchiyama K, Kikuchi T, Goda M, Nakahata T, Fujiyoshi Y, Dezawa M|year=2011|title=Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts|url=http://www.pnas.org/content/108/24/9875.long|journal=Proc Natl Acad Sci U S A|volume=108|issue=24|pages=9875–80|bibcode=2011PNAS..108.9875W|doi=10.1073/pnas.1100816108|pmid=21628574|pmc=3116385}}</ref>。分化マーカーとその比率はnestin (1.9%)、 MAP-2 (3.8%)、GFAP (3.4%)、O4 (2.9%)である。またbasic fibroblast growth factor、forskolin、ciliary neurotrophic factorの存在下ではMAP-2陽性や GFAP陽性細胞に分化する<ref name="WakaoPNAS" />。


ミューズ細胞を浮遊培養で1細胞から培養すると増殖し、ES細胞由来の胚様体に似たクラスターを形成する。このクラスターは多能性幹細胞の指標であるアルカリフォスファターゼ、Nanog, Oct3/4, Sox2, PAR4の発現が接着状態のミューズ細胞よりも顕著に亢進することが報告されている。浮遊培養で形成されたクラスターはゼラチンコートした培養皿上に移動させると接着し、間もなくクラスターから細胞が増殖して広がっていく。増殖した細胞には外胚葉、中胚葉、内胚葉に属する細胞が含まれていることから、ミューズ細胞は1細胞から三胚葉性の細胞に自発的に分化する能力を有すると言える<ref name=":9" /><ref name=":13" /><ref name=":1" />。
=== 肝細胞: ===
ヒト骨髄由来ミューズ細胞をゼラチンコートされた培養皿上で培養すると自発的に分化し、その中にDLK、alpha-fetoprotein、cytokeratin 19、cytokeratin 18陽性の細胞が含まれる<ref name="Kuroda" /><ref name=":4">Muse Cells, Nontumorigenic Pluripotent-Like Stem Cells, Have Liver Regeneration Capacity Through Specific Homing and Cell Replacement in a Mouse Model of Liver Fibrosis.


'''増殖速度'''
Iseki M, '''Kushida''' Y, '''Wakao''' S, Akimoto T, Mizuma M, Motoi F, Asada R, Shimizu S, Unno M, Chazenbalk G, '''Dezawa''' M.


ミューズ細胞の細胞分裂速度は接着培養下で約1.3日程度であることが報告されており、線維芽細胞の約1日程度と比べて同等かあるいは若干遅いといえる<ref name=":9" />。
Cell Transplant. 2017 May 9;26(5):821-840. doi: 10.3727/096368916X693662. Epub 2016 Nov 2.


=='''自己複製能'''==
PMID: 
ミューズ細胞は自己複製能を持ち、多能性幹細胞マーカーの発現を維持したまま増殖し、1細胞から3胚葉性の細胞への分化能力も自己複製されることが報告されている。また、その核型は正常が維持される<ref name=":14" /><ref name=":24" />。


== '''ミューズ細胞が採取できる組織''' ==
27938474
ミューズ細胞は外来で採取可能な骨髄穿刺液から単離することができる。また、生検で得られる皮膚組織や、脂肪吸引で得られる脂肪組織からも採取可能である。脂肪吸引は美容外科で頻繁に行われる、安全かつ非侵襲的な処置であり、こういった組織からミューズ細胞が簡単に採取できることは、再生医療分野で自家/他家移植の両方に用いることが可能であることを示唆する<ref name=":1" />。
</ref>。またInsulin-transferrin-selenium、dexamethasone、hepatocyte growth factor、fibroblast growth factor-4の存在下でalpha-fetoproteinやalbumin陽性細胞に分化する<ref name="WakaoPNAS" />。


ミューズ細胞はまた、市販の間葉系幹細胞(線維芽細胞や骨髄間葉系幹細胞、脂肪幹細胞など)からも採取することができ、容易に入手することが可能である。
=== 糸球体細胞: ===
ヒト骨髄由来ミューズ細胞はall trans retinoic acid、activin A、bone morphologic protein-7で誘導すると3週間後に糸球体マーカーWT1 と EYA1を発現する <ref name=":5">Beneficial Effects of Systemically Administered Human Muse Cells in Adriamycin Nephropathy.


以下はミューズ細胞のソースとして確認されているものである。
Uchida N, '''Kushida''' Y, Kitada M, '''Wakao''' S, Kumagai N, Kuroda Y, Kondo Y, Hirohara Y, Kure S, Chazenbalk G, '''Dezawa''' M.


* 骨髄穿刺液: およそ単核球3000個に対して1個の割合でミューズ細胞が含まれている<ref name=":9" /><ref name=":24" />
J Am Soc Nephrol. 2017 Jul 3. pii: ASN.2016070775. doi: 10.1681/ASN.2016070775. [Epub ahead of print]


* 脂肪: 皮下脂肪組織および脂肪吸引液の両方から採取可能である。<ref name=":13" /><ref name=":1" />
PMID: 28674043
</ref>。


* 皮膚: 真皮と皮下組織にある結合組織中に散在性に存在しており、血管や皮膚乳頭といった特定の組織的構造に存在しているわけではない。<ref name=":10" />
=== 脂肪細胞と骨細胞: ===
皮膚線維芽細胞由来あるいは脂肪組織由来ミューズ細胞は1-methyl-3-isobutylxanthine、dexamethasone、insulin、indomethacinの存在下で脂肪滴を有しoil redo O陽性の脂肪細胞に分化する<ref name="WakaoPNAS" /><ref name=":1">Format: Abstract
Send to
Stem Cells Dev. 2014 Apr 1;23(7):717-28. doi: 10.1089/scd.2013.0473. Epub 2014 Jan 17.
Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine.
Ogura F1, Wakao S, Kuroda Y, Tsuchiyama K, Bagheri M, Heneidi S, Chazenbalk G, Aiba S, Dezawa M.
PMID: 
24256547 
DOI: 
10.1089/scd.2013.0473
</ref>。また dexamethasone、ascorbic acid、β-glycerophosphate の誘導によってosteocalcin陽性の骨細胞に分化する<ref name="WakaoPNAS" />.


== 生体内でミューズ細胞の分化 ==
* 市販の細胞
ミューズ細胞は様々な動物モデルにおいて、傷害組織に生着した後、組織に応じた細胞に自発的に分化することが報告されている。


# 骨髄間葉系細胞: およそ数%の細胞がSSEA-3陽性のミューズ細胞であると報告されている<ref name=":9" />。
=== 脳梗塞と脳出血モデル: ===
# 線維芽細胞: およそ1~5%の細胞がSSEA-3陽性のミューズ細胞であると報告されている<ref name=":10" />。
脳組織内での神経系細胞への分化はいくつかのモデルで報告されている。ラット中大脳動脈閉塞による虚血再還流モデルに3 x 10<sup>4</sup>個のヒト皮膚線維芽細胞由来ミューズ細胞を梗塞周囲3カ所に分けて投与すると(一カ所につき1 x 10<sup>4</sup>個のミューズ細胞)、約二ヶ月半後、コントロール動物に比べて統計学的に有意な行動改善を認めた。これらの動物においては移植されたヒトミューズ細胞は脳内に生着後、神経細胞に自発的に分化していただけでなく、錐体路や知覚回路網に組み込まれ、体性感覚誘発電位での機能的な回復ももたらした<ref>Transplantation of Unique Subpopulation of Fibroblasts, Muse Cells, Ameliorates Experimental Stroke Possibly via Robust Neuronal Differentiation.
# 脂肪由来幹細胞: およそ1~7%の細胞がSSEA-3陽性のミューズ細胞であると報告されている<ref name=":13" />。


* 最終的なミューズ細胞の割合は間葉系組織の種類や操作手技など複数の要因で変動する。
Uchida H, Morita T, Niizuma K, '''Kushida''' Y, Kuroda Y, '''Wakao''' S, Sakata H, Matsuzaka Y, Mushiake H, Tominaga T, Borlongan CV, '''Dezawa''' M.


* ヒト以外の組織からもミューズ細胞が単離できることが報告されている。
Stem Cells. 2016 Jan;34(1):160-73. doi: 10.1002/stem.2206. Epub 2015 Sep 28.


ヤギ皮膚由来線維芽細胞から得られたSSEA-3陽性のクラスターは幹細胞様の形態を示し、アルカリフォスファターゼ陽性であった<ref name=":25">{{Cite journal|last=Liu|first=Jun|last2=Yang|first2=Zhongcai|last3=Qiu|first3=Mingning|last4=Luo|first4=Yan|last5=Pang|first5=Meijun|last6=Wu|first6=Yongyan|last7=Zhang|first7=Yong|date=2013-4|title=Developmental potential of cloned goat embryos from an SSEA3(+) subpopulation of skin fibroblasts|url=https://www.ncbi.nlm.nih.gov/pubmed/23441574|journal=Cellular Reprogramming|volume=15|issue=2|pages=159–165|doi=10.1089/cell.2012.0073|issn=2152-4998|pmid=23441574}}</ref>。[24]ウサギの骨髄からミューズ細胞が単離され、3胚葉性の分化等が再現されている。[34]またin vitro/in vivoの両方で三胚葉性の細胞へ分化する一方、浮遊状態で8回継代した後も未分化な状態を維持していたとの報告がある<ref name=":25" />。
PMID: 


=='''採集方法'''==
26388204 
ミューズ細胞は以下のような方法で採集することができると報告されている。
</ref>。またマウスのラクナ梗塞モデルやマウス中大脳動脈永久梗塞モデルに移植されたヒト骨髄由来ミューズ細胞においても脱落した神経細胞やオリゴデンドロサイトのミューズ細胞による置換が報告されている<ref name=":6">Human Muse Cells Reconstruct Neuronal Circuitry in Subacute Lacunar Stroke Model.


=== セルソーティング ===
Uchida H, Niizuma K, '''Kushida''' Y, '''Wakao''' S, Tominaga T, Borlongan CV, '''Dezawa''' M.
組織や市販の細胞からSSEA-3陽性、またはSSEA-3/CD105両陽性の細胞として単離することができる。組織から採集する場合、SSEA-3/CD105の両方を指標としても良いが、培養間葉系細胞は大半がCD105あるいはCD90陽性のため、SSEA-3の単独染色で十分可能である。


ミューズ細胞の単離に関する一連の流れは以下のようになっている<ref name=":0" />。
Stroke. 2017 Feb;48(2):428-435. doi: 10.1161/STROKEAHA.116.014950. Epub 2016 Dec 20.


# 線維芽細胞や骨髄単核球成分などのソースを用意する。
PMID: 27999136
# FACSを用いてSSEA-3陽性細胞を単離する。
</ref><ref>PLoS One. 2015 Mar 6;10(3):e0116009. doi: 10.1371/journal.pone.0116009. eCollection 2015.
# 限界希釈した浮遊培養により、クラスターの形成を確認する。(このステップでは細胞が底面に接着するのを阻止するため、poly-HEMAコートした培養皿を使用する。)


=== 長時間トリプシン処理 (Long-term trypsin, LTT) ===
Therapeutic effects of human multilineage-differentiating stress enduring (MUSE) cell transplantation into infarct brain of mice.
培養間葉系幹細胞に対してストレス処理を行うことで、ある程度ミューズ細胞が濃縮できることが報告されている。ヒト皮膚由来線維芽細胞では16時間、ヒト骨髄間葉系細胞では8時間のトリプシン処理が濃縮に有効であったと報告されている<ref name=":9" />。ただしこの処理はミューズ細胞を精製するのではなく、あくまでも濃縮するためのものであるため、移植実験や分化誘導などの厳密なミューズ細胞を使用して行う必要がある実験では上記のFACSによる単離の方が望ましい。


=== 重度細胞ストレス処理 (Severe cellular stress treatment, SCST) ===
Yamauchi T1, Kuroda Y2, Morita T2, Shichinohe H1, Houkin K1, Dezawa M2, Kuroda S3.
上記の長時間トリプシン処理よりもさらに過酷なストレス処理により、ミューズ細胞の高い濃縮細胞群が得られるとの報告がある。この報告では脂肪吸引液に対して特定のストレス処理を行うと最終的にミューズ細胞が高率に生き残り、その他の多くの細胞が死滅する。処理手順は以下のとおりである。


# 低温、低酸素、無血清状態で16時間のコラゲナーゼ処理を行う。
PMID: 25747577 PMCID: PMC4351985 DOI: 10.1371/journal.pone.0116009
# 遠心し、ペレットをPBSに懸濁する。
</ref>。特に前者のラクナ梗塞モデルでは、ヒトミューズ細胞が神経細胞に分化し、錐体路に組み込まれ、統計的に有意な機能回復をもたらすことが報告されている<ref name=":6" />。マウス脳出血モデルにおいては、出血領域周囲へ局所投与されたヒト骨髄由来ミューズ細胞が神経細胞に分化し、運動機能と記憶の改善をもたらす<ref>Neuro-regeneration therapy using human Muse cells is highly effective in a mouse intracerebral hemorrhage model.
# 溶血バッファーを加えてインキュベートする。


このような手順で得られたミューズ細胞は、脂肪由来幹細胞とは異なる細胞集団であると報告されている<ref name=":1" />。
Shimamura N, Kakuta K, Wang L, Naraoka M, '''Uchida''' H, Wakao S, '''Dezawa''' M, Ohkuma H.


== '''従来の間葉系幹細胞との基本的な違い''' ==
Exp Brain Res. 2017 Feb;235(2):565-572. doi: 10.1007/s00221-016-4818-y. Epub 2016 Nov 5.
間葉系幹細胞から単離したSSEA-3陽性のミューズ細胞と、それ以外のSSEA-3陰性の間葉系幹細胞(非ミューズ細胞)を比較した場合、大きく異なる点がいくつか報告されている。


# 限界希釈後の浮遊培養において、ミューズ細胞はES細胞の胚葉体に似たクラスターを形成するが、非ミューズ細胞は増殖せず、クラスターがほとんど形成されない。
PMID: 27817105
# ミューズ細胞に比べ、非ミューズ細胞の多能性関連遺伝子の発現は非常に低い、もしくは検出限界以下である。培養においては骨、軟骨、脂肪への分化は見られるが、外胚葉性あるいは内胚葉性の細胞への分化は見られない<ref name=":10" />。
</ref>。
# 非ミューズ細胞を動物の体内に投与しても生体に残らず、投与数日後で検出限界以下となる。生体に残らないため、組織内での分化や細胞置換も見られない。従ってミューズ細胞でみられるような組織修復作用はもたらされない。ただし、非ミューズ細胞は損傷部位で生着しない代わりに各種サイトカインや栄養因子、さらには抗炎症因子を産生することで間接的に組織修復を助けていることが示唆されている<ref name=":19" /><ref name=":6" /><ref name=":21" />。


== '''iPS細胞のソースとしてのミューズ細胞''' ==
=== 肝硬変と部分肝切除モデル: ===
ヒト線維芽細胞中に存在するSSEA-3陽性細胞から効率的にiPS細胞が誘導されるとの報告が2009年にされている<ref>{{Cite journal|last=Byrne|first=James A.|last2=Nguyen|first2=Ha Nam|last3=Reijo Pera|first3=Renee A.|date=2009-09-23|title=Enhanced generation of induced pluripotent stem cells from a subpopulation of human fibroblasts|url=https://www.ncbi.nlm.nih.gov/pubmed/19774082|journal=PloS One|volume=4|issue=9|pages=e7118|doi=10.1371/journal.pone.0007118|issn=1932-6203|pmid=19774082|pmc=PMC2744017}}</ref>。さらに2011年にはヒト線維芽細胞の中の数パーセントを構成するミューズ細胞からのみiPS細胞が樹立され、一方ミューズ細胞を除いた線維芽細胞からは山中4因子を導入してもNanogやSox2などの多能性因子の発現が見られずiPS細胞も誘導されないことが報告された<ref name=":10" />。これらの結果はiPS細胞の樹立は確率論的に誘導されるというstochastic modelではなく、特定の細胞集団から誘導されるというelite modelに従っていることを示唆している。ミューズ細胞はもともと多能性幹細胞であるため、iPS細胞との大きな違いは腫瘍形成能の有無である。つまりもともと細胞集団内に存在していた、多能性ではあるが腫瘍形成能のない幹細胞に対して山中因子が腫瘍形成能を与える事でiPS細胞ができるという可能性が示唆されている<ref name=":10" /><ref name=":4" />。
免疫不全マウス(SCIDマウス:ヒト細胞を拒絶しない)の肝硬変モデルにヒト骨髄由来ミューズ細胞を静脈投与すると、ミューズ細胞は傷害を受けた肝臓に生着し、自発的に肝細胞に分化した。多くの分化細胞ではマウスの肝細胞との融合は見られなかった。ヒトミューズ細胞は投与8ヶ月後、解毒酵素であるヒトCYP1A2 や糖代謝酵素であるヒトGlc-6-Paseを発現していた<ref name=":4" />。同様にSCIDマウスの部分肝切除モデルにヒト骨髄由来ミューズ細胞を静脈投与すると、損傷を受けている切除断端周辺に集積・生着した。生着した細胞の74.3%は肝細胞に、17.7%は胆管系細胞に、2%は洞様血管内皮細胞へ、6%がKupffer 細胞に分化していた<ref name=":7">A Distinct Subpopulation of Bone Marrow Mesenchymal Stem Cells, Muse Cells, Directly Commit to the Replacement of Liver Components.


== '''メラノサイトへの誘導''' ==
Katagiri H, '''Kushida''' Y, Nojima M, Kuroda Y, Wakao S, Ishida K, Endo F, Kume K, Takahara T, Nitta H, Tsuda H, '''Dezawa''' M, Nishizuka SS.
ヒト線維芽細胞由来ミューズ細胞から色素を作る機能的なメラノサイトが誘導されることが報告されている<ref name=":18" /><ref name=":26">{{Cite journal|last=Tian|first=Ting|last2=Zhang|first2=Ru-Zhi|last3=Yang|first3=Yu-Hua|last4=Liu|first4=Qi|last5=Li|first5=Di|last6=Pan|first6=Xiao-Ru|date=04 2017|title=Muse Cells Derived from Dermal Tissues Can Differentiate into Melanocytes|url=https://www.ncbi.nlm.nih.gov/pubmed/28170296|journal=Cellular Reprogramming|volume=19|issue=2|pages=116–122|doi=10.1089/cell.2016.0032|issn=2152-4998|pmid=28170296}}</ref><ref name=":27">{{Cite journal|last=Yamauchi|first=Takeshi|last2=Yamasaki|first2=Kenshi|last3=Tsuchiyama|first3=Kenichiro|last4=Koike|first4=Saaya|last5=Aiba|first5=Setsuya|date=2017-6|title=A quantitative analysis of multilineage-differentiating stress-enduring (Muse) cells in human adipose tissue and efficacy of melanocytes induction|url=https://www.ncbi.nlm.nih.gov/pubmed/28292562|journal=Journal of Dermatological Science|volume=86|issue=3|pages=198–205|doi=10.1016/j.jdermsci.2017.03.001|issn=1873-569X|pmid=28292562}}</ref><ref name=":28">{{Cite journal|last=Yamauchi|first=Takeshi|last2=Yamasaki|first2=Kenshi|last3=Tsuchiyama|first3=Kenichiro|last4=Koike|first4=Saaya|last5=Aiba|first5=Setsuya|date=2017-12|title=The Potential of Muse Cells for Regenerative Medicine of Skin: Procedures to Reconstitute Skin with Muse Cell-Derived Keratinocytes, Fibroblasts, and Melanocytes|url=https://www.ncbi.nlm.nih.gov/pubmed/28736234|journal=The Journal of Investigative Dermatology|volume=137|issue=12|pages=2639–2642|doi=10.1016/j.jid.2017.06.021|issn=1523-1747|pmid=28736234}}</ref>。ヒト線維芽細胞をミューズ細胞と非ミューズ細胞に分け、それぞれサイトカイン (Wnt3a, SCF, ET-3, bFGF, linoleic acid, cholera toxin, L-ascorbic acid, 12-O-tetradecanoylphorbol 13-acetate, insulin, transferrin, selenium, and dexamethasone)で処理したところ、ミューズ細胞はL-DOPA反応性を示す機能的なメラノサイトへと分化したが、非ミューズ細胞は誘導によってメラノサイト関連因子の一部を一過性に発現したものの、最終的には機能的なメラノサイトには分化しなかった。上皮をミューズ細胞由来メラノサイトとケラチノサイト、真皮をI型コラーゲンと線維芽細胞で模した皮膚の三次元培養モデルでは、ミューズ細胞由来メラノサイトがメラニン色素を産生することが確認されている。さらにin vivoにおいても、SCIDマウスの背中に移植されたミューズ細胞由来メラノサイトは上皮の基底層に生着し、メラニンを産生することが確認されている。


== '''in vitroにおけるミューズ細胞の分化能''' ==
Am J Transplant. 2016 Feb;16(2):468-83. doi: 10.1111/ajt.13537. Epub 2015 Dec 11.
複数のソースから得られたミューズ細胞が、様々な細胞種へと分化することが報告されている。


=== 色素細胞(メラノサイト): ===
PMID:26663569
ヒト線維芽細胞由来ミューズ細胞は、メラノサイトへの誘導のソースである。ミューズ細胞と非ミューズ細胞を各種サイトカイン (Wnt3a, SCF, ET-3, bFGF, linoleic acid, cholera toxin, L-ascorbic acid, 12-O-tetradecanoylphorbol 13-acetate, insulin, transferrin, selenium, and dexamethasone)で処理すると、最終的にミューズ細胞のみがL-DOPA反応性の機能的なメラノサイトへと分化し、三次元皮膚培養モデルでは実際にメラニンを産生することも確認された<ref name=":18" /><ref name=":26" />。
</ref>。上記いずれのモデルにおいても、コントロールとして投与されたミューズ細胞を除去した骨髄間葉系幹細胞(非ミューズ細胞)は投与一週の時点で肝臓内への細胞の生着がほとんど見られず、結果として肝細胞などへの分化は確認されなかった<ref name=":4" /><ref name=":7" />。


=== 慢性腎不全モデル: ===
=== 角化細胞: ===
ヒト脂肪組織由来Muse細胞は、ゼラチンコートディッシュ上で自発的に、もしくはBMP4やall-trans-Retinoic acidなどのサイトカイン処理により角化細胞へと分化する<ref name=":1" /><ref name=":27" /><ref name=":28" />。
免疫不全(SCID)マウスや正常な免疫力をもつBALB/cマウスの巣状分節性糸球体硬化症モデルに免疫抑制剤無しにヒト骨髄由来ミューズ細胞を静脈投与すると、いずれのモデルにおいてもヒトミューズ細胞は傷害腎臓の糸球体に選択的に集積・生着し、自発的に糸球体を構成する細胞に分化した。生着した細胞の~31%が足細胞へ、~13%がメサンジウム細胞へ、そして~41%が糸球体血管内皮細胞に分化していた。さらに糸球体の硬化や線維化を抑制し、クレアチニンクリアランス等の腎機能改善が見られた<ref name=":5" />。


=== 糖尿病性皮膚潰瘍モデル: ===
=== 神経細胞: ===
ヒト骨髄由来または線維芽細胞由来ミューズ細胞は、ゼラチンコートディッシュ上で培養すると神経系の細胞へと自発的に分化することができる<ref name=":9" />。単一のミューズ細胞由来のクラスターをゼラチンコートしたディッシュ上で培養すると、神経系細胞のマーカーであるnestin (1.9%), MAP-2 (3.8%), GFAP (3.4%), O4 (2.9%)陽性細胞へと分化することが確認されている<ref name=":16" />。これらの結果はミューズ細胞が神経系の細胞へと分化可能であることを示している。MAP-2もしくはGFAP陽性細胞の割合は、bFGF, forskolin, CNTF存在下で培養することで増加する<ref name=":10" />。
糖尿病モデルマウスの皮膚に欠損を作成し、ヒト脂肪組織由来ミューズ細胞を欠損部位周辺数カ所の皮膚に局所投与したところ、ヒトミューズ細胞は表皮と真皮に生着し、表皮では角化細胞に、真皮では血管内皮細胞や線維芽細胞などに自発的に分化した。また損傷皮膚も正常マウスよりも早く傷が閉じて、皮膚修復の促進が確認された<ref>Therapeutic Potential of Adipose-Derived '''SSEA'''-3-Positive Muse Cells for Treating Diabetic Skin Ulcers.


=== 肝細胞: ===
'''Kinoshita''' K, Kuno S, Ishimine H, Aoi N, Mineda K, Kato H, Doi K, Kanayama K, Feng J, Mashiko T, Kurisaki A, '''Yoshimura''' K.
ミューズ細胞はゼラチンコートディッシュ上で培養することでDLK, α-フェトプロテイン, サイトケラチン18, サイトケラチン19陽性の肝細胞へ分化する<ref name=":21" />。また、ITS, デキサメタゾン, HGF, FGF-4存在下で培養することでα-フェトプロテインおよびアルブミン発現細胞へと分化する<ref name=":15" />。


=== 腎臓細胞: ===
Stem Cells Transl Med. 2015 Feb;4(2):146-55. doi: 10.5966/sctm.2014-0181. Epub 2015 Jan 5.
ミューズ細胞をall-trans-Retinoic acid、activin A, BMP7存在下で3週間培養すると腎臓のマーカーであるWT1, EYA1を発現する<ref name=":19" />。


=== 心臓細胞: ===
PMID:25561682
5' -azacytidine存在下でミューズ細胞を培養後、初期心筋分化因子であるWnt-3a, BMP-2/4, TGFβ1存在下で接着培養し、その後さらに後期心筋分化因子であるcardiotrophin-1を含む培地で培養することで横紋様の模様を持ち、α-actininおよびtroponin-Iを発現する心筋様細胞へと分化する<ref name=":5" />。
</ref>。


=== 脂肪細胞と骨細胞: ===
== 臨床データーにおけるミューズ細胞 ==
ミューズ細胞のクラスターから培養した細胞は、1-methyl-3-isobutylxanthine, dexamethasone, insulin, indomethacinを含む培地で培養することで、脂肪滴を持ち、oil red Oで染色される脂肪細胞へと分化する。また、dexamethasone, ascorbic acid, and β-glycerophosphateを含む培地で培養することで、オステオカルシン陽性の骨細胞へと分化する<ref name=":10" />。
健常人の骨髄組織や末梢血中にSSEA-3陽性のミューズ細胞が存在することが報告されている<ref name=":0">J Stroke Cerebrovasc Dis. 2016 Jun;25(6):1473-81. doi: 10.1016/j.jstrokecerebrovasdis.2015.12.033. Epub 2016 Mar 24.
Mobilization of Pluripotent Multilineage-Differentiating Stress-Enduring Cells in Ischemic Stroke.
Hori E1, Hayakawa Y2, Hayashi T2, Hori S2, Okamoto S3, Shibata T3, Kubo M3, Horie Y3, Sasahara M4, Kuroda S5.
PMID: 27019988 DOI: 10.1016/j.jstrokecerebrovasdis.2015.12.033
</ref><ref name=":8">Mobilized Muse Cells After Acute Myocardial Infarction Predict Cardiac Function and Remodeling in the Chronic Phase.


== '''ミューズ細胞の生体内における損傷修復''' ==
Tanaka T, Nishigaki K, Minatoguchi S, Nawa T, Yamada Y, Kanamori H, Mikami A, Ushikoshi H, Kawasaki M, Dezawa M, Minatoguchi S.
様々な組織から単離されたミューズ細胞が、疾患動物モデルで損傷修復効果を示している。


=== 急性心筋梗塞モデル: ===
Cir J, 2017 in press
急性心筋梗塞モデルのウサギに骨髄由来ミューズ細胞を静脈経由で自家移植・他家移植・異種移植(ヒト)すると、3日目ですでに投与された細胞の14.5%程度が梗塞部へと選択的に遊走・生着することが認められた<ref name=":6" />。ミューズ細胞はS1P (sphingosine monophosphate) receptor 2を使い、傷害部位から産生されたS1Pに向かって遊走することで、静脈投与であっても選択的に傷害部位に集積できると考えられる。遊走・生着後、ミューズ細胞は自発的にcardiac troponin-I, sarcomeric α-actinin, connexin-43陽性の心筋や血管の細胞へと分化していた。また、GCaMP3を導入したミューズ細胞は、心電図と同期してGCaMP3蛍光のオンオフが確認されたことから、ミューズ細胞が生理学的に機能性を持つ心筋細胞へと分化し、周辺のホストの心筋細胞とも連結をしていることが示唆された。ミューズ細胞を移植した場合の梗塞サイズは、コントロール群と比較して52%程度減少(骨髄間葉系幹細胞MSC移植群と比べて2.5倍の縮小)し、心拍出量ejection fractionは38%程度増加(MSC移植群と比べて2.1倍の増加)した。ウサギーウサギの他家移植およびヒトーウサギの異種移植でもミューズ細胞は損傷部位に生着し、心筋細胞に自発的に分化することで機能回復に貢献していた。中でも他家移植の場合には、免疫抑制剤なしで最長6カ月の間、組織に心筋細胞として生着し続け、機能回復に貢献し続けていたことが確認されている。
</ref>. 脳梗塞発症後24時間で患者の末梢血中のミューズ細胞数が劇的に増加する<ref name=":0" />。急性心筋梗塞患者においても、同様に発症24時間後において末梢血中のミューズ細胞数が統計的有意差をもって増加し、同時に血液中のsphingosine-1-phosphateも増加することが報告されている<ref name=":8" />。これらの増加は2-3週間かけて正常値に戻る。発症初期に血液中ミューズ細胞が有意に増加した患者は、増加しなかった患者に比べて6ヶ月後において統計的に有意な心機能回復と心不全の回避が見られた。これらの事から、生体内に存在する内因性のミューズ細胞は組織の修復に関わっていることがヒトにおいて示唆された <ref name=":8" />。


=== 脳梗塞および脳内出血モデル: ===
== ミューズ細胞事業 ==
ミューズ細胞の神経再生能については複数のモデルで示されている。
[http://www.lsii.co.jp/ 株式会社 生命科学インスティテュート (Life Science Institute Inc)]がミューズ細胞を用いた再生医療事業を行っている。


虚血再灌流による中大脳動脈閉塞(MCAO)ラット脳卒中モデルにおいて、3×10<sup>4</sup>個のヒト皮膚由来ミューズ細胞を局所注射にて梗塞領域内の3カ所 (1カ所あたり1×10<sup>4</sup>個)に投与したところ、2.5カ月の時点でコントロール群と比較して統計的に有意な機能回復が見られた。機能回復はミューズ細胞がラットの錐体路や感覚路へ生着したことで、後肢体性感覚誘発電位が正常に戻ったためであるとみられている<ref name=":16" />。同様に、ヒト骨髄由来ミューズ細胞をマウスの永続的MCAOモデルやマウス小空洞性脳卒中モデルに局所注射した実験でも梗塞部位に生着し、神経細胞やオリゴデンドロサイトへと分化していたことが報告されている<ref name=":7" /><ref name=":8" />。マウス小空洞性脳卒中モデルではヒトミューズ細胞由来神経細胞は錐体路を形成する神経細胞に分化し、統計的に有意な機能回復をもたらした<ref name=":7" />。マウス脳内出血モデルでもヒト骨髄由来ミューズ細胞を局所注射したところ、自発的に神経細胞へと分化した。このモデルではマウスは運動機能と空間学習、さらには記憶能力を回復した<ref name=":20" />。
== iPS細胞源としてのミューズ細胞 ==
2009年、ヒト線維芽細胞のうちSSEA-3陽性細胞のみがiPS細胞を形成することが示された<ref>{{cite journal|author=Byrne, J.A., H.N. Nguyen, and R.A. Reijo Pera|title= Enhanced generation of induced pluripotent stem cells from a subpopulation of human fibroblasts|journal= PLoS One|year= 2009|volume= 4|issue=9|pages= e7118|doi= 10.1371/journal.pone.0007118}}</ref>。2011年には、iPS細胞作成時にミューズ細胞以外の細胞では[[山中4因子]]導入後も[[Sox2]]および[[Nanog]]発現量の上昇が見られず、iPS細胞はミューズ細胞のみから作成できることが示唆されたとする研究データに基づいて、iPS細胞の多能性はミューズ細胞が元来持つ性質であり、山中因子は腫瘍形成性を付与しただけであるとの説も提起された<ref name=WakaoPNAS />。


=== 肝不全および肝部分切除モデル: ===
== 出典 ==
静脈注射によるヒト骨髄由来ミューズ細胞の投与により、CCL-4による肝硬変モデル免疫不全マウスの機能回復が見られた。この実験では移植されたマウス自身の肝細胞と融合することなく、ヒトミューズ細胞は自発的に肝細胞へと分化していた。さらには成熟した機能的肝細胞のマーカーであるヒトCYP1A2(解毒酵素)やヒトGlc-6-Pase(糖代謝のための酵素)を投与8週の時点で発現していた<ref name=":21" />。
== 参考文献 ==
* {{cite journal|authors=Wakao, S., Akashi, H., Kushida, Y. and Dezawa, M |year=2014|doi=10.1111/pin.12129|title=[http://onlinelibrary.wiley.com/doi/10.1111/pin.12129/full Muse cells, newly found non-tumorigenic pluripotent stem cells, reside in human mesenchymal tissues]|journal=Pathology International|volume=64|pages=1–9}}


ヒト骨髄由来ミューズ細胞を肝部分切除モデル免疫不全マウスに静脈投与した場合、損傷部位への遊走後に肝臓の主要構成細胞である肝細胞(生着したGFP陽性ミューズ細胞の74.3%)、胆管細胞 (同17.7%)、類洞血管内皮細胞(同2.0%)、クッパー細胞(同6.0%)へとそれぞれ自発的に分化していた<ref name=":15" />。

どちらのモデルにおいても、非ミューズ細胞を移植した場合は移植後数日から実験終了時までのどの段階でも、肝臓内に検出されなかった。従って肝細胞への分化も見られなかった<ref name=":15" /><ref name=":21" />。

=== 慢性腎不全モデル: ===
ヒト骨髄由来ミューズ細胞を巣状分節性糸球体硬化症モデルのSCIDやBALB/cマウスに免疫抑制剤なしで静脈投与したところ、選択的に腎臓糸球体に生着し、自発的に糸球体構成細胞に分化することで腎機能回復をもたらした。静脈投与されたミューズ細胞は傷害を受けた糸球体へと遊走し、マウス自身の細胞と融合することなく、自発的に足細胞 (podocin陽性、~31%)、メサンギウム細胞 (megsin陽性、~13%)、血管内皮細胞 (CD31陽性、~41%)へと分化していた。その結果、糸球体硬化症と間質性線維症は軽減され、統計的有意差のあるクレアチニンクリアランスなどの腎機能の回復がもたらされた<ref name=":19" />。

=== I型糖尿病モデルマウスの皮膚潰瘍: ===
ヒト脂肪組織由来ミューズ細胞を濃縮した細胞群は、I型糖尿病モデルマウスの皮膚潰瘍の創傷治癒を有意に加速した。皮下に移植されたミューズ細胞は上皮と真皮に生着し、角化細胞や血管内皮細胞などへと自発的に分化した。ミューズ細胞を移植されたモデルマウスの潰瘍の治癒速度は非ミューズ細胞を移植されたマウスに比べて統計的有意差をもって早く、完治までにかかる時間は野生型のマウスよりもむしろ短かった。また上皮の厚みも増していた<ref name=":17" />。

=== 大動脈瘤モデル: ===
ヒト骨髄由来ミューズ細胞を大動脈瘤モデルSCIDマウスへ静脈経由すると、8週目には大動脈瘤の拡張が顕著に改善され、そのサイズはコントロール群のおよそ45.6%となっていた。移植されたミューズ細胞は動脈瘤の外膜側から内腔側へと侵入している様子も観察された。組織学的解析ではミューズ細胞が血管内皮細胞や血管平滑筋細胞へと自発的に分化しており、さらに血管を構成する弾性線維が産生されていることが確認された<ref name=":22" />。

== '''ミューズ細胞の臨床データ''' ==
ミューズ細胞は健常なヒト骨髄に存在しており、末梢血中のミューズ細胞の数は脳卒中患者では発症の24時間後に劇的に上昇することが報告されている<ref name=":12" />。急性心筋梗塞患者においては末梢血中のミューズ細胞の数は発症の24時間後に、血清中のスフィンゴシン1リン酸(S1P)の濃度とともに有意に上昇し、2~3週間以内に元のレベルまで戻る。重要な点は、急性期に末梢血中のミューズ細胞数が上昇した患者は、発症後6カ月の時点での心機能の回復や心不全の回避が見られる点であり、これは患者自身に内在しているミューズ細胞が組織の修復機能を持っていることを示唆している<ref name=":23" />。

== '''再生医学''' ==

* 骨髄移植: ミューズ細胞は骨髄単核球成分の一部(~0.03%)として骨髄細胞集団中に存在する<ref name=":9" /><ref name=":24" />。これは、ミューズ細胞が1958年より行われている「骨髄移植」の一部としてこれまで投与されてきたことを意味している<ref>{{Cite journal|last=Cosset|first=Jean Marc|date=2002-4|title=ESTRO Breur Gold Medal Award Lecture 2001: irradiation accidents-- lessons for oncology?|url=https://www.ncbi.nlm.nih.gov/pubmed/12065098|journal=Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology|volume=63|issue=1|pages=1–10|issn=0167-8140|pmid=12065098}}</ref>。

* 間葉系幹細胞移植: ミューズ細胞は培養された骨髄由来間葉系細胞や脂肪由来幹細胞といった間葉系細胞にも数パーセントの割合で存在している。この間葉系幹細胞もまた肝臓・心臓・神経組織・気道・皮膚・骨格筋・腸などの治療のためにヒトに移植されている<ref>{{Cite journal|last=Kuroda|first=Yasumasa|last2=Kitada|first2=Masaaki|last3=Wakao|first3=Shohei|last4=Dezawa|first4=Mari|date=2011-10|title=Bone marrow mesenchymal cells: how do they contribute to tissue repair and are they really stem cells?|url=https://www.ncbi.nlm.nih.gov/pubmed/21789625|journal=Archivum Immunologiae Et Therapiae Experimentalis|volume=59|issue=5|pages=369–378|doi=10.1007/s00005-011-0139-9|issn=1661-4917|pmid=21789625}}</ref>。したがってこれら培養した間葉系細胞の代わりに純化もしくは濃縮されたミューズ細胞を使用すれば、再生効果が改善する可能性がある<ref name=":11" />。

* ミューズ細胞は生体に投与しても腫瘍形成の危険が低いため、再生医療や細胞ベースの治療における多能性幹細胞のソースとして実現可能性が高いと期待されている。

== '''臨床試験''' ==
現在、株式会社 生命科学インスティテュートとその親会社、三菱ケミカルホールディングスにより医薬品製造品質管理基準(GMP)および再生医療等製品に関わる規制要件(GCTP)を満たす細胞処理手順が確立され、2018年1月より急性心筋梗塞患者を対象とした第1相治験が開始されている<ref name=":2" /><ref name=":3" />。

== 出典 ==
<references responsive="" />
== 関連項目 ==
== 関連項目 ==
* [[幹細胞]]
* [[幹細胞]]

2018年7月24日 (火) 08:05時点における版

ミューズ細胞(ミューズさいぼう、: Muse cell; Multi-lineage differentiating Stress Enduring cell)は生体に内在する非腫瘍性の多能性幹細胞であり、ほぼすべての組織の結合組織や骨髄、末梢血に存在している[1][2][3][4]。ヒト線維芽細胞やヒト骨髄間葉系細胞、脂肪由来幹細胞などの市販の間葉系細胞からも単離することができ、自発的に、またはサイトカインの誘導により単細胞から体を構成する要素である外胚葉系、中胚葉系、内胚葉系の細胞に分化することができる[5][6][7]。さらに、この3胚葉性の分化能は自己複製可能である。多能性幹細胞の関連遺伝子の発現を認めるが、腫瘍性に関連する遺伝子は体細胞レベルと同等で低く、テロメラーゼ活性も低く抑えられているため、無限増殖を行わない。従ってミューズ細胞は生体に移植されても腫瘍形成の危険が極めて低い。ミューズ細胞は2010年に東北大学の出澤真理教授のグループによってはじめて発見・報告された[1]。2018年1月には三菱ケミカルホールディングスグループの傘下の株式会社生命科学インスティテュートが急性心筋梗塞患者を対象とした第一相治験を開始している[8][9]

特徴

  • ストレス耐性を有する[10]
  • 腫瘍性を持たない。他の幹細胞よりも短い時間でDNA損傷の修復が行われる[11]
  • 多能性幹細胞のマーカーの一つとして知られているStage-specific embryonic antigen (SSEA)-3陽性細胞として単離することが可能である[1][2][3][4]
  • 多様な組織の結合組織、骨髄、末梢血中に存在する。骨髄移植で移植される細胞群のうちの~0.03%、骨髄、脂肪などから採取可能な間葉系細胞の数%に相当する[1]
  • 自己複製能と3胚葉由来の多種多様な細胞への分化能を有する多能性幹細胞である[1]
  • テロメラーゼ活性は体細胞と同程度で低く、腫瘍性を示さない[1][6][12]
  • 正常ヒト生体組織より遺伝子の導入などの人為的操作なしに多能性幹細胞として単離することが可能である。
  • 免疫抑制/調節効果、線維化抑制効果、血管新生効果、組織保護効果を示す[12]
  • 静脈経由または局所への投与により、生体の損傷部位へと選択的に集積・生着する[13][14][15]
  • 傷害組織に生着後、組織に応じた細胞へと自発的に分化することで機能的な細胞を補充する。サイトカインや遺伝子導入による分化誘導を必要としない[1][13][14][15]
  • 従ってミューズ細胞を分離し、遺伝子操作などなくそのまま点滴で生体に投与することによって、様々な組織を修復させることができる。

マーカー

ミューズ細胞は未分化ヒトES細胞などの多能性幹細胞のマーカーとして知られているSSEA-3を発現している細胞として同定された[1][16]。またCD105、 CD90、 CD29などの一般的な間葉系幹細胞マーカーも発現しており、間葉系幹細胞と多能性幹細胞の両マーカーを同時に発現している細胞でもある[1]。抗SSEA-3抗体を使用して単離したミューズ細胞のサイズはおよそ直径13-15μmである。ミューズ細胞はCD34 (造血幹細胞、脂肪幹細胞、VSELsのマーカー)やCD117 (造血幹細胞のマーカー)、Snai1・Slug (共に皮膚前駆細胞のマーカー), CD271・Sox10 (共に神経堤由来幹細胞のマーカー)、NG2・CD146 (共に血管周囲細胞のマーカー)、CD31・von Willebrand factor (共に血管内皮前駆細胞のマーカー)をすべて発現していないことから、これまでに報告のあったどの幹細胞とも異なる幹細胞である[1][17]

ミューズ細胞の分化能

In vitro

ミューズ細胞は培養系において、以下のようなマーカー陽性の細胞に自発的、またはサイトカインによる誘導で分化することが報告されている。

  1. 外胚葉系細胞 (nestin, NeuroD, Musashi, neurofilament, MAP-2, tyrosinase, MITF, gf100, TRP-1, DCT)[2][18]
  2. 中胚葉系細胞 (brachyury, Nkx2-5, smooth muscle actin, osteocalcin, oil red-(+) lipid droplets, desmin, WT-1, EYA1, Podocin, Megsin, Troponin-1, Cx43, Tbx20, ANP, Mlc1a, Mlc1v, CD31, CD34, Foxc1, Klf2)[1][2][19][20]
  3. 内胚葉系細胞 (GATA-6, α-fetoprotein, cytokeratin-7, albumin)[1][2]

ヒト皮膚繊維芽細胞由来ミューズ細胞からサイトカインカクテルを用いて誘導されたメラニン産生細胞(メラノサイト)は生体の皮膚に移植された後も脱落することなく生着し、そのままメラニンを産生し続けることが土山らによって確認されている[18]

In vivo

ヒトミューズ細胞が血中へ注入されると損傷部位へ遊走・生着した後に、自発的にその組織を構成する細胞へと分化し、組織修復へと寄与することが以下の損傷モデル動物で確認されている。

  1. 心筋梗塞モデル[21]
  2. 脳梗塞モデル[14][22][23]
  3. 脳出血モデル[24]
  4. 腎不全モデル[19]
  5. 肝不全モデル[25]
  6. 肝部分切除モデル[13]
  7. 糖尿病性皮膚潰瘍モデル[15]
  8. 大動脈瘤[26]
  9. 筋変性モデル[1]
  10. 皮膚損傷モデル[1]

非腫瘍形成性

低テロメラーゼ活性

ミューズ細胞の特徴として、腫瘍形成能の指標の一つであるテロメラーゼ活性が低いことが挙げられる。Hela細胞やiPS細胞ではこのテロメラーゼ活性が高いことが報告されているが、一方でミューズ細胞では線維芽細胞のような正常体細胞の活性と同程度である。このことはミューズ細胞が腫瘍形成能をもたない理由の一つである[1][6][12]

多能性関連遺伝子および細胞増殖関連遺伝子の発現

ミューズ細胞における多能性関連遺伝子の「発現パターン」はES細胞やiPS細胞とほぼ同じであるが、その「発現レベル」は低い[2]。一方、ミューズ細胞での細胞増殖関連遺伝子の発現は正常体細胞と同レベルであり、ES細胞やiPS細胞と比べて低い。これらのことはミューズ細胞が多能性を示す一方で腫瘍形成能を示さない理由と考えられる[27]

マウス精巣への移植

幹細胞の腫瘍原性を調べる際に行われる免疫不全マウスの精巣内への移植実験において、ミューズ細胞は移植後6カ月経過してもテラトーマは形成されなかった[1][2][6][12]。したがって、ミューズ細胞は多能性幹細胞でありながら腫瘍形成能を持たない細胞である[1]。同様の例として、特定条件下で培養されたエピブラスト幹細胞はin vitroで多能性を示す一方、マウス精巣内に移植してもテラトーマを形成しなかったとの報告がある[28]。従ってテラトーマの形成はあくまでも腫瘍原性の確認とその場合の多能性の証明法の一つであり、そもそも多能性幹細胞が常にテラトーマを形成するわけではないことに留意する必要がある。

組織修復

ミューズ細胞は生体内で組織修復を担っている細胞である可能性がある。脳梗塞患者では、発症後24時間で末梢血中のミューズ細胞数が統計的有意差をもって増加することが報告されている[4]。心筋梗塞患者の末梢血中の内因性ミューズ細胞の動態解析では、発症急性期に血液中のミューズ細胞が増加した患者では半年後、心機能回復や心不全回避の傾向が見られた。一方、急性期に増加しなかった患者ではこれらの効果を示さない傾向が見られた[29]。このことから、内因性のミューズ細胞は傷害を受けた臓器の修復に関わっていることが示唆されている。

また実験的には、遺伝子導入やサイトカイン処理が施されていないミューズ細胞をそのまま静脈投与すると、損傷部位へと遊走・生着し、その組織に適した細胞へと自発的に分化して組織修復や機能回復をもたらすことが動物モデルで示されている。

  • 心筋梗塞モデル(TroponinI, alpha-actinin, Connexin43等を発現する心筋細胞)[21]
  • 劇症肝炎モデル&肝部分切除モデル (解毒酵素や糖代謝酵素を発現するalbumin・HepPar1陽性肝細胞へ分化)[1][13][25]
  • 腎不全モデル(糸球体を構成する細胞、すなわちWT-1, podocin陽性足細胞、Megsin陽性メサンギウム細胞、CD31, von Willebrand factor陽性血管内皮細胞)[19]
  • 筋変性モデル (ジストロフィン発現細胞へ分化)[1]
  • 大動脈瘤モデル(CD31,smooth muscle actin陽性の血管内皮細胞)[26]

また局所投与によっても同様に傷害部位へ遊走・生着し、組織に適した細胞に自発分化し、組織修復と機能回復をもたらすことが報告されている。

  • 脳梗塞・脳出血モデル (NeuN・Calbindin・Synaptophysin等を発現し錐体路に組み込まれる神経細胞、およびGSTπ陽性オリゴデンドロサイトへの分化)[14][22][23][24]
  • 脊髄損傷モデル (ニューロフィラメント・MAP-2発現細胞へ分化)[30]
  • 皮膚損傷モデル・糖尿病性皮膚潰瘍(サイトケラチン14陽性角化細胞へ分化)[1][15][31]

サイトカイン処理も人為的な遺伝子操作も必要なく、ただ血中に注入するだけで組織が修復できることは、再生医療での大きな利点である。現在、株式会社生命科学インスティテュートにより医薬品製造品質管理基準(GMP)および再生医療等製品に関わる規制要件(GCTP)を満たす細胞処理手順が確立されて、2018年1月より急性心筋梗塞患者を対象としたPhase 1の治験が開始されている[8][9]

基本的特徴

ミューズ細胞の持つ多能性 (多能性関連遺伝子の発現、3胚葉性細胞への分化、自己複製能)はヒト骨髄穿刺液から直接単離した細胞でも確認されており、培養操作により獲得したものではないことが示されている[1]

生体に存在する

ミューズ細胞は各種臓器の結合組織や末梢血、骨髄にもともと存在している多能性幹細胞であり、骨髄中では単核球細胞のうち、およそ3000個に1個の割合で存在することが示されている。培養を経ずにSSEA-3を指標に直接骨髄液から単離したミューズ細胞は、多能性因子の発現、3胚葉性分化、自己複製を示す。この事から、ミューズ細胞の示す多能性はストレスやサイトカイン、人為的な遺伝子操作などによって誘導されたものではないと言える[1][2][3][4][7]

周囲の環境による二面性

ミューズ細胞は結合組織中や骨髄内での接着環境、あるいは接着培養など、足場に接着できる状況では線維芽細胞様の形態を示すが、血中や浮遊培養などの浮遊環境に置かれることによって多能性因子の発現が顕著に亢進し、1細胞から増殖してES細胞様胚葉体を形成することが知られている[1][2][25]

ES細胞の胚様体のようなクラスターの形成

ミューズ細胞を浮遊培養で1細胞から培養すると増殖し、ES細胞由来の胚様体に似たクラスターを形成する。このクラスターは多能性幹細胞の指標であるアルカリフォスファターゼ、Nanog, Oct3/4, Sox2, PAR4の発現が接着状態のミューズ細胞よりも顕著に亢進することが報告されている。浮遊培養で形成されたクラスターはゼラチンコートした培養皿上に移動させると接着し、間もなくクラスターから細胞が増殖して広がっていく。増殖した細胞には外胚葉、中胚葉、内胚葉に属する細胞が含まれていることから、ミューズ細胞は1細胞から三胚葉性の細胞に自発的に分化する能力を有すると言える[1][6][7]

増殖速度

ミューズ細胞の細胞分裂速度は接着培養下で約1.3日程度であることが報告されており、線維芽細胞の約1日程度と比べて同等かあるいは若干遅いといえる[1]

自己複製能

ミューズ細胞は自己複製能を持ち、多能性幹細胞マーカーの発現を維持したまま増殖し、1細胞から3胚葉性の細胞への分化能力も自己複製されることが報告されている。また、その核型は正常が維持される[12][30]

ミューズ細胞が採取できる組織

ミューズ細胞は外来で採取可能な骨髄穿刺液から単離することができる。また、生検で得られる皮膚組織や、脂肪吸引で得られる脂肪組織からも採取可能である。脂肪吸引は美容外科で頻繁に行われる、安全かつ非侵襲的な処置であり、こういった組織からミューズ細胞が簡単に採取できることは、再生医療分野で自家/他家移植の両方に用いることが可能であることを示唆する[7]

ミューズ細胞はまた、市販の間葉系幹細胞(線維芽細胞や骨髄間葉系幹細胞、脂肪幹細胞など)からも採取することができ、容易に入手することが可能である。

以下はミューズ細胞のソースとして確認されているものである。

  • 骨髄穿刺液: およそ単核球3000個に対して1個の割合でミューズ細胞が含まれている[1][30]
  • 脂肪: 皮下脂肪組織および脂肪吸引液の両方から採取可能である。[6][7]
  • 皮膚: 真皮と皮下組織にある結合組織中に散在性に存在しており、血管や皮膚乳頭といった特定の組織的構造に存在しているわけではない。[2]
  • 市販の細胞
  1. 骨髄間葉系細胞: およそ数%の細胞がSSEA-3陽性のミューズ細胞であると報告されている[1]
  2. 線維芽細胞: およそ1~5%の細胞がSSEA-3陽性のミューズ細胞であると報告されている[2]
  3. 脂肪由来幹細胞: およそ1~7%の細胞がSSEA-3陽性のミューズ細胞であると報告されている[6]
  • 最終的なミューズ細胞の割合は間葉系組織の種類や操作手技など複数の要因で変動する。
  • ヒト以外の組織からもミューズ細胞が単離できることが報告されている。

ヤギ皮膚由来線維芽細胞から得られたSSEA-3陽性のクラスターは幹細胞様の形態を示し、アルカリフォスファターゼ陽性であった[32]。[24]ウサギの骨髄からミューズ細胞が単離され、3胚葉性の分化等が再現されている。[34]またin vitro/in vivoの両方で三胚葉性の細胞へ分化する一方、浮遊状態で8回継代した後も未分化な状態を維持していたとの報告がある[32]

採集方法

ミューズ細胞は以下のような方法で採集することができると報告されている。

セルソーティング

組織や市販の細胞からSSEA-3陽性、またはSSEA-3/CD105両陽性の細胞として単離することができる。組織から採集する場合、SSEA-3/CD105の両方を指標としても良いが、培養間葉系細胞は大半がCD105あるいはCD90陽性のため、SSEA-3の単独染色で十分可能である。

ミューズ細胞の単離に関する一連の流れは以下のようになっている[5]

  1. 線維芽細胞や骨髄単核球成分などのソースを用意する。
  2. FACSを用いてSSEA-3陽性細胞を単離する。
  3. 限界希釈した浮遊培養により、クラスターの形成を確認する。(このステップでは細胞が底面に接着するのを阻止するため、poly-HEMAコートした培養皿を使用する。)

長時間トリプシン処理 (Long-term trypsin, LTT)

培養間葉系幹細胞に対してストレス処理を行うことで、ある程度ミューズ細胞が濃縮できることが報告されている。ヒト皮膚由来線維芽細胞では16時間、ヒト骨髄間葉系細胞では8時間のトリプシン処理が濃縮に有効であったと報告されている[1]。ただしこの処理はミューズ細胞を精製するのではなく、あくまでも濃縮するためのものであるため、移植実験や分化誘導などの厳密なミューズ細胞を使用して行う必要がある実験では上記のFACSによる単離の方が望ましい。

重度細胞ストレス処理 (Severe cellular stress treatment, SCST)

上記の長時間トリプシン処理よりもさらに過酷なストレス処理により、ミューズ細胞の高い濃縮細胞群が得られるとの報告がある。この報告では脂肪吸引液に対して特定のストレス処理を行うと最終的にミューズ細胞が高率に生き残り、その他の多くの細胞が死滅する。処理手順は以下のとおりである。

  1. 低温、低酸素、無血清状態で16時間のコラゲナーゼ処理を行う。
  2. 遠心し、ペレットをPBSに懸濁する。
  3. 溶血バッファーを加えてインキュベートする。

このような手順で得られたミューズ細胞は、脂肪由来幹細胞とは異なる細胞集団であると報告されている[7]

従来の間葉系幹細胞との基本的な違い

間葉系幹細胞から単離したSSEA-3陽性のミューズ細胞と、それ以外のSSEA-3陰性の間葉系幹細胞(非ミューズ細胞)を比較した場合、大きく異なる点がいくつか報告されている。

  1. 限界希釈後の浮遊培養において、ミューズ細胞はES細胞の胚葉体に似たクラスターを形成するが、非ミューズ細胞は増殖せず、クラスターがほとんど形成されない。
  2. ミューズ細胞に比べ、非ミューズ細胞の多能性関連遺伝子の発現は非常に低い、もしくは検出限界以下である。培養においては骨、軟骨、脂肪への分化は見られるが、外胚葉性あるいは内胚葉性の細胞への分化は見られない[2]
  3. 非ミューズ細胞を動物の体内に投与しても生体に残らず、投与数日後で検出限界以下となる。生体に残らないため、組織内での分化や細胞置換も見られない。従ってミューズ細胞でみられるような組織修復作用はもたらされない。ただし、非ミューズ細胞は損傷部位で生着しない代わりに各種サイトカインや栄養因子、さらには抗炎症因子を産生することで間接的に組織修復を助けていることが示唆されている[19][21][25]

iPS細胞のソースとしてのミューズ細胞

ヒト線維芽細胞中に存在するSSEA-3陽性細胞から効率的にiPS細胞が誘導されるとの報告が2009年にされている[33]。さらに2011年にはヒト線維芽細胞の中の数パーセントを構成するミューズ細胞からのみiPS細胞が樹立され、一方ミューズ細胞を除いた線維芽細胞からは山中4因子を導入してもNanogやSox2などの多能性因子の発現が見られずiPS細胞も誘導されないことが報告された[2]。これらの結果はiPS細胞の樹立は確率論的に誘導されるというstochastic modelではなく、特定の細胞集団から誘導されるというelite modelに従っていることを示唆している。ミューズ細胞はもともと多能性幹細胞であるため、iPS細胞との大きな違いは腫瘍形成能の有無である。つまりもともと細胞集団内に存在していた、多能性ではあるが腫瘍形成能のない幹細胞に対して山中因子が腫瘍形成能を与える事でiPS細胞ができるという可能性が示唆されている[2][17]

メラノサイトへの誘導

ヒト線維芽細胞由来ミューズ細胞から色素を作る機能的なメラノサイトが誘導されることが報告されている[18][34][35][36]。ヒト線維芽細胞をミューズ細胞と非ミューズ細胞に分け、それぞれサイトカイン (Wnt3a, SCF, ET-3, bFGF, linoleic acid, cholera toxin, L-ascorbic acid, 12-O-tetradecanoylphorbol 13-acetate, insulin, transferrin, selenium, and dexamethasone)で処理したところ、ミューズ細胞はL-DOPA反応性を示す機能的なメラノサイトへと分化したが、非ミューズ細胞は誘導によってメラノサイト関連因子の一部を一過性に発現したものの、最終的には機能的なメラノサイトには分化しなかった。上皮をミューズ細胞由来メラノサイトとケラチノサイト、真皮をI型コラーゲンと線維芽細胞で模した皮膚の三次元培養モデルでは、ミューズ細胞由来メラノサイトがメラニン色素を産生することが確認されている。さらにin vivoにおいても、SCIDマウスの背中に移植されたミューズ細胞由来メラノサイトは上皮の基底層に生着し、メラニンを産生することが確認されている。

in vitroにおけるミューズ細胞の分化能

複数のソースから得られたミューズ細胞が、様々な細胞種へと分化することが報告されている。

色素細胞(メラノサイト):

ヒト線維芽細胞由来ミューズ細胞は、メラノサイトへの誘導のソースである。ミューズ細胞と非ミューズ細胞を各種サイトカイン (Wnt3a, SCF, ET-3, bFGF, linoleic acid, cholera toxin, L-ascorbic acid, 12-O-tetradecanoylphorbol 13-acetate, insulin, transferrin, selenium, and dexamethasone)で処理すると、最終的にミューズ細胞のみがL-DOPA反応性の機能的なメラノサイトへと分化し、三次元皮膚培養モデルでは実際にメラニンを産生することも確認された[18][34]

角化細胞:

ヒト脂肪組織由来Muse細胞は、ゼラチンコートディッシュ上で自発的に、もしくはBMP4やall-trans-Retinoic acidなどのサイトカイン処理により角化細胞へと分化する[7][35][36]

神経細胞:

ヒト骨髄由来または線維芽細胞由来ミューズ細胞は、ゼラチンコートディッシュ上で培養すると神経系の細胞へと自発的に分化することができる[1]。単一のミューズ細胞由来のクラスターをゼラチンコートしたディッシュ上で培養すると、神経系細胞のマーカーであるnestin (1.9%), MAP-2 (3.8%), GFAP (3.4%), O4 (2.9%)陽性細胞へと分化することが確認されている[14]。これらの結果はミューズ細胞が神経系の細胞へと分化可能であることを示している。MAP-2もしくはGFAP陽性細胞の割合は、bFGF, forskolin, CNTF存在下で培養することで増加する[2]

肝細胞:

ミューズ細胞はゼラチンコートディッシュ上で培養することでDLK, α-フェトプロテイン, サイトケラチン18, サイトケラチン19陽性の肝細胞へ分化する[25]。また、ITS, デキサメタゾン, HGF, FGF-4存在下で培養することでα-フェトプロテインおよびアルブミン発現細胞へと分化する[13]

腎臓細胞:

ミューズ細胞をall-trans-Retinoic acid、activin A, BMP7存在下で3週間培養すると腎臓のマーカーであるWT1, EYA1を発現する[19]

心臓細胞:

5' -azacytidine存在下でミューズ細胞を培養後、初期心筋分化因子であるWnt-3a, BMP-2/4, TGFβ1存在下で接着培養し、その後さらに後期心筋分化因子であるcardiotrophin-1を含む培地で培養することで横紋様の模様を持ち、α-actininおよびtroponin-Iを発現する心筋様細胞へと分化する[20]

 脂肪細胞と骨細胞:

ミューズ細胞のクラスターから培養した細胞は、1-methyl-3-isobutylxanthine, dexamethasone, insulin, indomethacinを含む培地で培養することで、脂肪滴を持ち、oil red Oで染色される脂肪細胞へと分化する。また、dexamethasone, ascorbic acid, and β-glycerophosphateを含む培地で培養することで、オステオカルシン陽性の骨細胞へと分化する[2]

ミューズ細胞の生体内における損傷修復

様々な組織から単離されたミューズ細胞が、疾患動物モデルで損傷修復効果を示している。

急性心筋梗塞モデル:

急性心筋梗塞モデルのウサギに骨髄由来ミューズ細胞を静脈経由で自家移植・他家移植・異種移植(ヒト)すると、3日目ですでに投与された細胞の14.5%程度が梗塞部へと選択的に遊走・生着することが認められた[21]。ミューズ細胞はS1P (sphingosine monophosphate) receptor 2を使い、傷害部位から産生されたS1Pに向かって遊走することで、静脈投与であっても選択的に傷害部位に集積できると考えられる。遊走・生着後、ミューズ細胞は自発的にcardiac troponin-I, sarcomeric α-actinin, connexin-43陽性の心筋や血管の細胞へと分化していた。また、GCaMP3を導入したミューズ細胞は、心電図と同期してGCaMP3蛍光のオンオフが確認されたことから、ミューズ細胞が生理学的に機能性を持つ心筋細胞へと分化し、周辺のホストの心筋細胞とも連結をしていることが示唆された。ミューズ細胞を移植した場合の梗塞サイズは、コントロール群と比較して52%程度減少(骨髄間葉系幹細胞MSC移植群と比べて2.5倍の縮小)し、心拍出量ejection fractionは38%程度増加(MSC移植群と比べて2.1倍の増加)した。ウサギーウサギの他家移植およびヒトーウサギの異種移植でもミューズ細胞は損傷部位に生着し、心筋細胞に自発的に分化することで機能回復に貢献していた。中でも他家移植の場合には、免疫抑制剤なしで最長6カ月の間、組織に心筋細胞として生着し続け、機能回復に貢献し続けていたことが確認されている。

脳梗塞および脳内出血モデル:

ミューズ細胞の神経再生能については複数のモデルで示されている。

虚血再灌流による中大脳動脈閉塞(MCAO)ラット脳卒中モデルにおいて、3×104個のヒト皮膚由来ミューズ細胞を局所注射にて梗塞領域内の3カ所 (1カ所あたり1×104個)に投与したところ、2.5カ月の時点でコントロール群と比較して統計的に有意な機能回復が見られた。機能回復はミューズ細胞がラットの錐体路や感覚路へ生着したことで、後肢体性感覚誘発電位が正常に戻ったためであるとみられている[14]。同様に、ヒト骨髄由来ミューズ細胞をマウスの永続的MCAOモデルやマウス小空洞性脳卒中モデルに局所注射した実験でも梗塞部位に生着し、神経細胞やオリゴデンドロサイトへと分化していたことが報告されている[22][23]。マウス小空洞性脳卒中モデルではヒトミューズ細胞由来神経細胞は錐体路を形成する神経細胞に分化し、統計的に有意な機能回復をもたらした[22]。マウス脳内出血モデルでもヒト骨髄由来ミューズ細胞を局所注射したところ、自発的に神経細胞へと分化した。このモデルではマウスは運動機能と空間学習、さらには記憶能力を回復した[24]

肝不全および肝部分切除モデル:

静脈注射によるヒト骨髄由来ミューズ細胞の投与により、CCL-4による肝硬変モデル免疫不全マウスの機能回復が見られた。この実験では移植されたマウス自身の肝細胞と融合することなく、ヒトミューズ細胞は自発的に肝細胞へと分化していた。さらには成熟した機能的肝細胞のマーカーであるヒトCYP1A2(解毒酵素)やヒトGlc-6-Pase(糖代謝のための酵素)を投与8週の時点で発現していた[25]

ヒト骨髄由来ミューズ細胞を肝部分切除モデル免疫不全マウスに静脈投与した場合、損傷部位への遊走後に肝臓の主要構成細胞である肝細胞(生着したGFP陽性ミューズ細胞の74.3%)、胆管細胞 (同17.7%)、類洞血管内皮細胞(同2.0%)、クッパー細胞(同6.0%)へとそれぞれ自発的に分化していた[13]

どちらのモデルにおいても、非ミューズ細胞を移植した場合は移植後数日から実験終了時までのどの段階でも、肝臓内に検出されなかった。従って肝細胞への分化も見られなかった[13][25]

慢性腎不全モデル:

ヒト骨髄由来ミューズ細胞を巣状分節性糸球体硬化症モデルのSCIDやBALB/cマウスに免疫抑制剤なしで静脈投与したところ、選択的に腎臓糸球体に生着し、自発的に糸球体構成細胞に分化することで腎機能回復をもたらした。静脈投与されたミューズ細胞は傷害を受けた糸球体へと遊走し、マウス自身の細胞と融合することなく、自発的に足細胞 (podocin陽性、~31%)、メサンギウム細胞 (megsin陽性、~13%)、血管内皮細胞 (CD31陽性、~41%)へと分化していた。その結果、糸球体硬化症と間質性線維症は軽減され、統計的有意差のあるクレアチニンクリアランスなどの腎機能の回復がもたらされた[19]

I型糖尿病モデルマウスの皮膚潰瘍:

ヒト脂肪組織由来ミューズ細胞を濃縮した細胞群は、I型糖尿病モデルマウスの皮膚潰瘍の創傷治癒を有意に加速した。皮下に移植されたミューズ細胞は上皮と真皮に生着し、角化細胞や血管内皮細胞などへと自発的に分化した。ミューズ細胞を移植されたモデルマウスの潰瘍の治癒速度は非ミューズ細胞を移植されたマウスに比べて統計的有意差をもって早く、完治までにかかる時間は野生型のマウスよりもむしろ短かった。また上皮の厚みも増していた[15]

大動脈瘤モデル:

ヒト骨髄由来ミューズ細胞を大動脈瘤モデルSCIDマウスへ静脈経由すると、8週目には大動脈瘤の拡張が顕著に改善され、そのサイズはコントロール群のおよそ45.6%となっていた。移植されたミューズ細胞は動脈瘤の外膜側から内腔側へと侵入している様子も観察された。組織学的解析ではミューズ細胞が血管内皮細胞や血管平滑筋細胞へと自発的に分化しており、さらに血管を構成する弾性線維が産生されていることが確認された[26]

ミューズ細胞の臨床データ

ミューズ細胞は健常なヒト骨髄に存在しており、末梢血中のミューズ細胞の数は脳卒中患者では発症の24時間後に劇的に上昇することが報告されている[4]。急性心筋梗塞患者においては末梢血中のミューズ細胞の数は発症の24時間後に、血清中のスフィンゴシン1リン酸(S1P)の濃度とともに有意に上昇し、2~3週間以内に元のレベルまで戻る。重要な点は、急性期に末梢血中のミューズ細胞数が上昇した患者は、発症後6カ月の時点での心機能の回復や心不全の回避が見られる点であり、これは患者自身に内在しているミューズ細胞が組織の修復機能を持っていることを示唆している[29]

再生医学

  • 骨髄移植: ミューズ細胞は骨髄単核球成分の一部(~0.03%)として骨髄細胞集団中に存在する[1][30]。これは、ミューズ細胞が1958年より行われている「骨髄移植」の一部としてこれまで投与されてきたことを意味している[37]
  • 間葉系幹細胞移植: ミューズ細胞は培養された骨髄由来間葉系細胞や脂肪由来幹細胞といった間葉系細胞にも数パーセントの割合で存在している。この間葉系幹細胞もまた肝臓・心臓・神経組織・気道・皮膚・骨格筋・腸などの治療のためにヒトに移植されている[38]。したがってこれら培養した間葉系細胞の代わりに純化もしくは濃縮されたミューズ細胞を使用すれば、再生効果が改善する可能性がある[3]
  • ミューズ細胞は生体に投与しても腫瘍形成の危険が低いため、再生医療や細胞ベースの治療における多能性幹細胞のソースとして実現可能性が高いと期待されている。

臨床試験

現在、株式会社 生命科学インスティテュートとその親会社、三菱ケミカルホールディングスにより医薬品製造品質管理基準(GMP)および再生医療等製品に関わる規制要件(GCTP)を満たす細胞処理手順が確立され、2018年1月より急性心筋梗塞患者を対象とした第1相治験が開始されている[8][9]

出典

  1. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad Kuroda, Yasumasa; Kitada, Masaaki; Wakao, Shohei; Nishikawa, Kouki; Tanimura, Yukihiro; Makinoshima, Hideki; Goda, Makoto; Akashi, Hideo et al. (2010-05-11). “Unique multipotent cells in adult human mesenchymal cell populations”. Proceedings of the National Academy of Sciences of the United States of America 107 (19): 8639–8643. doi:10.1073/pnas.0911647107. ISSN 1091-6490. PMC PMC2889306. PMID 20421459. https://www.ncbi.nlm.nih.gov/pubmed/20421459. 
  2. ^ a b c d e f g h i j k l m n o p Wakao, Shohei; Kitada, Masaaki; Kuroda, Yasumasa; Shigemoto, Taeko; Matsuse, Dai; Akashi, Hideo; Tanimura, Yukihiro; Tsuchiyama, Kenichiro et al. (2011-06-14). “Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts”. Proceedings of the National Academy of Sciences of the United States of America 108 (24): 9875–9880. doi:10.1073/pnas.1100816108. ISSN 1091-6490. PMC PMC3116385. PMID 21628574. https://www.ncbi.nlm.nih.gov/pubmed/21628574. 
  3. ^ a b c d Dezawa, Mari (2016). “Muse Cells Provide the Pluripotency of Mesenchymal Stem Cells: Direct Contribution of Muse Cells to Tissue Regeneration”. Cell Transplantation 25 (5): 849–861. doi:10.3727/096368916X690881. ISSN 1555-3892. PMID 26884346. https://www.ncbi.nlm.nih.gov/pubmed/26884346. 
  4. ^ a b c d e Hori, Emiko; Hayakawa, Yumiko; Hayashi, Tomohide; Hori, Satoshi; Okamoto, Soushi; Shibata, Takashi; Kubo, Michiya; Horie, Yukio et al. (2016-6). “Mobilization of Pluripotent Multilineage-Differentiating Stress-Enduring Cells in Ischemic Stroke”. Journal of Stroke and Cerebrovascular Diseases: The Official Journal of National Stroke Association 25 (6): 1473–1481. doi:10.1016/j.jstrokecerebrovasdis.2015.12.033. ISSN 1532-8511. PMID 27019988. https://www.ncbi.nlm.nih.gov/pubmed/27019988. 
  5. ^ a b Kuroda, Yasumasa; Wakao, Shohei; Kitada, Masaaki; Murakami, Toru; Nojima, Makoto; Dezawa, Mari (2013). “Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells”. Nature Protocols 8 (7): 1391–1415. doi:10.1038/nprot.2013.076. ISSN 1750-2799. PMID 23787896. https://www.ncbi.nlm.nih.gov/pubmed/23787896. 
  6. ^ a b c d e f g Ogura, Fumitaka; Wakao, Shohei; Kuroda, Yasumasa; Tsuchiyama, Kenichiro; Bagheri, Mozhdeh; Heneidi, Saleh; Chazenbalk, Gregorio; Aiba, Setsuya et al. (2014-04-01). “Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine”. Stem Cells and Development 23 (7): 717–728. doi:10.1089/scd.2013.0473. ISSN 1557-8534. PMID 24256547. https://www.ncbi.nlm.nih.gov/pubmed/24256547. 
  7. ^ a b c d e f g Heneidi, Saleh; Simerman, Ariel A.; Keller, Erica; Singh, Prapti; Li, Xinmin; Dumesic, Daniel A.; Chazenbalk, Gregorio (2013). “Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue”. PloS One 8 (6): e64752. doi:10.1371/journal.pone.0064752. ISSN 1932-6203. PMC PMC3673968. PMID 23755141. https://www.ncbi.nlm.nih.gov/pubmed/23755141. 
  8. ^ a b c Development of Muse cell therapy for KAITEKI society”. 2018年7月24日閲覧。
  9. ^ a b c Life Science Institute, Inc.”. www.lsii.co.jp. 2018年7月23日閲覧。
  10. ^ Alessio, Nicola; Özcan, Servet; Tatsumi, Kazuki; Murat, Ayşegül; Peluso, Gianfranco; Dezawa, Mari; Galderisi, Umberto (2017-01-02). “The secretome of MUSE cells contains factors that may play a role in regulation of stemness, apoptosis and immunomodulation”. Cell Cycle (Georgetown, Tex.) 16 (1): 33–44. doi:10.1080/15384101.2016.1211215. ISSN 1551-4005. PMC PMC5270533. PMID 27463232. https://www.ncbi.nlm.nih.gov/pubmed/27463232. 
  11. ^ Alessio, Nicola; Squillaro, Tiziana; Özcan, Servet; Di Bernardo, Giovanni; Venditti, Massimo; Melone, Mariarosa; Peluso, Gianfranco; Galderisi, Umberto (2018-04-10). “Stress and stem cells: adult Muse cells tolerate extensive genotoxic stimuli better than mesenchymal stromal cells”. Oncotarget 9 (27): 19328–19341. doi:10.18632/oncotarget.25039. ISSN 1949-2553. PMC PMC5922400. PMID 29721206. https://www.ncbi.nlm.nih.gov/pubmed/29721206. 
  12. ^ a b c d e Gimeno, María L.; Fuertes, Florencia; Barcala Tabarrozzi, Andres E.; Attorressi, Alejandra I.; Cucchiani, Rodolfo; Corrales, Luis; Oliveira, Talita C.; Sogayar, Mari C. et al. (2017-1). “Pluripotent Nontumorigenic Adipose Tissue-Derived Muse Cells have Immunomodulatory Capacity Mediated by Transforming Growth Factor-β1”. Stem Cells Translational Medicine 6 (1): 161–173. doi:10.5966/sctm.2016-0014. ISSN 2157-6564. PMC PMC5442729. PMID 28170177. https://www.ncbi.nlm.nih.gov/pubmed/28170177. 
  13. ^ a b c d e f g Katagiri, H.; Kushida, Y.; Nojima, M.; Kuroda, Y.; Wakao, S.; Ishida, K.; Endo, F.; Kume, K. et al. (2016-2). “A Distinct Subpopulation of Bone Marrow Mesenchymal Stem Cells, Muse Cells, Directly Commit to the Replacement of Liver Components”. American Journal of Transplantation: Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons 16 (2): 468–483. doi:10.1111/ajt.13537. ISSN 1600-6143. PMID 26663569. https://www.ncbi.nlm.nih.gov/pubmed/26663569. 
  14. ^ a b c d e f Uchida, Hiroki; Morita, Takahiro; Niizuma, Kuniyasu; Kushida, Yoshihiro; Kuroda, Yasumasa; Wakao, Shohei; Sakata, Hiroyuki; Matsuzaka, Yoshiya et al. (2016-1). “Transplantation of Unique Subpopulation of Fibroblasts, Muse Cells, Ameliorates Experimental Stroke Possibly via Robust Neuronal Differentiation”. Stem Cells (Dayton, Ohio) 34 (1): 160–173. doi:10.1002/stem.2206. ISSN 1549-4918. PMID 26388204. https://www.ncbi.nlm.nih.gov/pubmed/26388204. 
  15. ^ a b c d e Kinoshita, Kahori; Kuno, Shinichiro; Ishimine, Hisako; Aoi, Noriyuki; Mineda, Kazuhide; Kato, Harunosuke; Doi, Kentaro; Kanayama, Koji et al. (2015-2). “Therapeutic Potential of Adipose-Derived SSEA-3-Positive Muse Cells for Treating Diabetic Skin Ulcers”. Stem Cells Translational Medicine 4 (2): 146–155. doi:10.5966/sctm.2014-0181. ISSN 2157-6564. PMC PMC4303359. PMID 25561682. https://www.ncbi.nlm.nih.gov/pubmed/25561682. 
  16. ^ Thomson, J. A.; Itskovitz-Eldor, J.; Shapiro, S. S.; Waknitz, M. A.; Swiergiel, J. J.; Marshall, V. S.; Jones, J. M. (1998-11-06). “Embryonic stem cell lines derived from human blastocysts”. Science (New York, N.Y.) 282 (5391): 1145–1147. ISSN 0036-8075. PMID 9804556. https://www.ncbi.nlm.nih.gov/pubmed/9804556. 
  17. ^ a b Wakao, Shohei; Kitada, Masaaki; Dezawa, Mari (2013-1). “The elite and stochastic model for iPS cell generation: multilineage-differentiating stress enduring (Muse) cells are readily reprogrammable into iPS cells”. Cytometry. Part A: The Journal of the International Society for Analytical Cytology 83 (1): 18–26. doi:10.1002/cyto.a.22069. ISSN 1552-4930. PMID 22693162. https://www.ncbi.nlm.nih.gov/pubmed/22693162. 
  18. ^ a b c d Tsuchiyama, Kenichiro; Wakao, Shohei; Kuroda, Yasumasa; Ogura, Fumitaka; Nojima, Makoto; Sawaya, Natsue; Yamasaki, Kenshi; Aiba, Setsuya et al. (2013-10). “Functional melanocytes are readily reprogrammable from multilineage-differentiating stress-enduring (muse) cells, distinct stem cells in human fibroblasts”. The Journal of Investigative Dermatology 133 (10): 2425–2435. doi:10.1038/jid.2013.172. ISSN 1523-1747. PMID 23563197. https://www.ncbi.nlm.nih.gov/pubmed/23563197. 
  19. ^ a b c d e f Uchida, Nao; Kushida, Yoshihiro; Kitada, Masaaki; Wakao, Shohei; Kumagai, Naonori; Kuroda, Yasumasa; Kondo, Yoshiaki; Hirohara, Yukari et al. (2017-10). “Beneficial Effects of Systemically Administered Human Muse Cells in Adriamycin Nephropathy”. Journal of the American Society of Nephrology: JASN 28 (10): 2946–2960. doi:10.1681/ASN.2016070775. ISSN 1533-3450. PMC PMC5619953. PMID 28674043. https://www.ncbi.nlm.nih.gov/pubmed/28674043. 
  20. ^ a b Amin, Mohamed; Kushida, Yoshihiro; Wakao, Shohei; Kitada, Masaaki; Tatsumi, Kazuki; Dezawa, Mari (2018-2). “Cardiotrophic Growth Factor-Driven Induction of Human Muse Cells Into Cardiomyocyte-Like Phenotype”. Cell Transplantation 27 (2): 285–298. doi:10.1177/0963689717721514. ISSN 1555-3892. PMC PMC5898685. PMID 29637816. https://www.ncbi.nlm.nih.gov/pubmed/29637816. 
  21. ^ a b c d Yamada, Yoshihisa; Wakao, Shohei; Kushida, Yoshihiro; Minatoguchi, Shingo; Mikami, Atsushi; Higashi, Kenshi; Baba, Shinya; Shigemoto, Taeko et al. (2018-04-13). “S1P-S1PR2 Axis Mediates Homing of Muse Cells Into Damaged Heart for Long-Lasting Tissue Repair and Functional Recovery After Acute Myocardial Infarction”. Circulation Research 122 (8): 1069–1083. doi:10.1161/CIRCRESAHA.117.311648. ISSN 1524-4571. PMID 29475983. https://www.ncbi.nlm.nih.gov/pubmed/29475983. 
  22. ^ a b c d Uchida, Hiroki; Niizuma, Kuniyasu; Kushida, Yoshihiro; Wakao, Shohei; Tominaga, Teiji; Borlongan, Cesario V.; Dezawa, Mari (02 2017). “Human Muse Cells Reconstruct Neuronal Circuitry in Subacute Lacunar Stroke Model”. Stroke 48 (2): 428–435. doi:10.1161/STROKEAHA.116.014950. ISSN 1524-4628. PMC PMC5262965. PMID 27999136. https://www.ncbi.nlm.nih.gov/pubmed/27999136. 
  23. ^ a b c Yamauchi, Tomohiro; Kuroda, Yasumasa; Morita, Takahiro; Shichinohe, Hideo; Houkin, Kiyohiro; Dezawa, Mari; Kuroda, Satoshi (2015). “Therapeutic effects of human multilineage-differentiating stress enduring (MUSE) cell transplantation into infarct brain of mice”. PloS One 10 (3): e0116009. doi:10.1371/journal.pone.0116009. ISSN 1932-6203. PMC PMC4351985. PMID 25747577. https://www.ncbi.nlm.nih.gov/pubmed/25747577. 
  24. ^ a b c Shimamura, Norihito; Kakuta, Kiyohide; Wang, Liang; Naraoka, Masato; Uchida, Hiroki; Wakao, Shohei; Dezawa, Mari; Ohkuma, Hiroki (02 2017). “Neuro-regeneration therapy using human Muse cells is highly effective in a mouse intracerebral hemorrhage model”. Experimental Brain Research 235 (2): 565–572. doi:10.1007/s00221-016-4818-y. ISSN 1432-1106. PMID 27817105. https://www.ncbi.nlm.nih.gov/pubmed/27817105. 
  25. ^ a b c d e f g Iseki, Masahiro; Kushida, Yoshihiro; Wakao, Shohei; Akimoto, Takahiro; Mizuma, Masamichi; Motoi, Fuyuhiko; Asada, Ryuta; Shimizu, Shinobu et al. (05 09, 2017). “Muse Cells, Nontumorigenic Pluripotent-Like Stem Cells, Have Liver Regeneration Capacity Through Specific Homing and Cell Replacement in a Mouse Model of Liver Fibrosis”. Cell Transplantation 26 (5): 821–840. doi:10.3727/096368916X693662. ISSN 1555-3892. PMC PMC5657714. PMID 27938474. https://www.ncbi.nlm.nih.gov/pubmed/27938474. 
  26. ^ a b c Hosoyama, Katsuhiro; Wakao, Shohei; Kushida, Yoshihiro; Ogura, Fumitaka; Maeda, Kay; Adachi, Osamu; Kawamoto, Shunsuke; Dezawa, Mari et al. (2018-6). “Intravenously injected human multilineage-differentiating stress-enduring cells selectively engraft into mouse aortic aneurysms and attenuate dilatation by differentiating into multiple cell types”. The Journal of Thoracic and Cardiovascular Surgery 155 (6): 2301–2313.e4. doi:10.1016/j.jtcvs.2018.01.098. ISSN 1097-685X. PMID 29559260. https://www.ncbi.nlm.nih.gov/pubmed/29559260. 
  27. ^ Kitada, Masaaki; Wakao, Shohei; Dezawa, Mari (2012-11). “Muse cells and induced pluripotent stem cell: implication of the elite model”. Cellular and molecular life sciences: CMLS 69 (22): 3739–3750. doi:10.1007/s00018-012-0994-5. ISSN 1420-9071. PMC PMC3478511. PMID 22527723. https://www.ncbi.nlm.nih.gov/pubmed/22527723. 
  28. ^ Chou, Yu-Fen; Chen, Hsu-Hsin; Eijpe, Maureen; Yabuuchi, Akiko; Chenoweth, Joshua G.; Tesar, Paul; Lu, Jun; McKay, Ronald D. G. et al. (2008-10-31). “The growth factor environment defines distinct pluripotent ground states in novel blastocyst-derived stem cells”. Cell 135 (3): 449–461. doi:10.1016/j.cell.2008.08.035. ISSN 1097-4172. PMC PMC2767270. PMID 18984157. https://www.ncbi.nlm.nih.gov/pubmed/18984157. 
  29. ^ a b Tanaka, Toshiki; Nishigaki, Kazuhiko; Minatoguchi, Shingo; Nawa, Takahide; Yamada, Yoshihisa; Kanamori, Hiromitsu; Mikami, Atsushi; Ushikoshi, Hiroaki et al. (2018-01-25). “Mobilized Muse Cells After Acute Myocardial Infarction Predict Cardiac Function and Remodeling in the Chronic Phase”. Circulation Journal: Official Journal of the Japanese Circulation Society 82 (2): 561–571. doi:10.1253/circj.CJ-17-0552. ISSN 1347-4820. PMID 28931784. https://www.ncbi.nlm.nih.gov/pubmed/28931784. 
  30. ^ a b c d Wakao, Shohei; Kuroda, Yasumasa; Ogura, Fumitaka; Shigemoto, Taeko; Dezawa, Mari (2012-11-08). “Regenerative Effects of Mesenchymal Stem Cells: Contribution of Muse Cells, a Novel Pluripotent Stem Cell Type that Resides in Mesenchymal Cells”. Cells 1 (4): 1045–1060. doi:10.3390/cells1041045. ISSN 2073-4409. PMC PMC3901150. PMID 24710542. https://www.ncbi.nlm.nih.gov/pubmed/24710542. 
  31. ^ Mineda, Kazuhide; Feng, Jingwei; Ishimine, Hisako; Takada, Hitomi; Doi, Kentaro; Kuno, Shinichiro; Kinoshita, Kahori; Kanayama, Koji et al. (2015-12). “Therapeutic Potential of Human Adipose-Derived Stem/Stromal Cell Microspheroids Prepared by Three-Dimensional Culture in Non-Cross-Linked Hyaluronic Acid Gel”. Stem Cells Translational Medicine 4 (12): 1511–1522. doi:10.5966/sctm.2015-0037. ISSN 2157-6564. PMC PMC4675504. PMID 26494781. https://www.ncbi.nlm.nih.gov/pubmed/26494781. 
  32. ^ a b Liu, Jun; Yang, Zhongcai; Qiu, Mingning; Luo, Yan; Pang, Meijun; Wu, Yongyan; Zhang, Yong (2013-4). “Developmental potential of cloned goat embryos from an SSEA3(+) subpopulation of skin fibroblasts”. Cellular Reprogramming 15 (2): 159–165. doi:10.1089/cell.2012.0073. ISSN 2152-4998. PMID 23441574. https://www.ncbi.nlm.nih.gov/pubmed/23441574. 
  33. ^ Byrne, James A.; Nguyen, Ha Nam; Reijo Pera, Renee A. (2009-09-23). “Enhanced generation of induced pluripotent stem cells from a subpopulation of human fibroblasts”. PloS One 4 (9): e7118. doi:10.1371/journal.pone.0007118. ISSN 1932-6203. PMC PMC2744017. PMID 19774082. https://www.ncbi.nlm.nih.gov/pubmed/19774082. 
  34. ^ a b Tian, Ting; Zhang, Ru-Zhi; Yang, Yu-Hua; Liu, Qi; Li, Di; Pan, Xiao-Ru (04 2017). “Muse Cells Derived from Dermal Tissues Can Differentiate into Melanocytes”. Cellular Reprogramming 19 (2): 116–122. doi:10.1089/cell.2016.0032. ISSN 2152-4998. PMID 28170296. https://www.ncbi.nlm.nih.gov/pubmed/28170296. 
  35. ^ a b Yamauchi, Takeshi; Yamasaki, Kenshi; Tsuchiyama, Kenichiro; Koike, Saaya; Aiba, Setsuya (2017-6). “A quantitative analysis of multilineage-differentiating stress-enduring (Muse) cells in human adipose tissue and efficacy of melanocytes induction”. Journal of Dermatological Science 86 (3): 198–205. doi:10.1016/j.jdermsci.2017.03.001. ISSN 1873-569X. PMID 28292562. https://www.ncbi.nlm.nih.gov/pubmed/28292562. 
  36. ^ a b Yamauchi, Takeshi; Yamasaki, Kenshi; Tsuchiyama, Kenichiro; Koike, Saaya; Aiba, Setsuya (2017-12). “The Potential of Muse Cells for Regenerative Medicine of Skin: Procedures to Reconstitute Skin with Muse Cell-Derived Keratinocytes, Fibroblasts, and Melanocytes”. The Journal of Investigative Dermatology 137 (12): 2639–2642. doi:10.1016/j.jid.2017.06.021. ISSN 1523-1747. PMID 28736234. https://www.ncbi.nlm.nih.gov/pubmed/28736234. 
  37. ^ Cosset, Jean Marc (2002-4). “ESTRO Breur Gold Medal Award Lecture 2001: irradiation accidents-- lessons for oncology?”. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology 63 (1): 1–10. ISSN 0167-8140. PMID 12065098. https://www.ncbi.nlm.nih.gov/pubmed/12065098. 
  38. ^ Kuroda, Yasumasa; Kitada, Masaaki; Wakao, Shohei; Dezawa, Mari (2011-10). “Bone marrow mesenchymal cells: how do they contribute to tissue repair and are they really stem cells?”. Archivum Immunologiae Et Therapiae Experimentalis 59 (5): 369–378. doi:10.1007/s00005-011-0139-9. ISSN 1661-4917. PMID 21789625. https://www.ncbi.nlm.nih.gov/pubmed/21789625. 

関連項目