自然七度

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索
自然七度
転回形英語版 七の長二度英語版
名称
別称 七の短七度、下短七度
略称 m7
音程の広さ
半音の数 ~9.7
インターバルクラス ~2.3
純正音程 7:4[1]
セント値
平均律 1000
純正律 968.826


自然七度 Harmonic seventh on C.mid Play[ヘルプ/ファイル]7リミット英語版の七度。
転回型である、七の長二度(B7が根音)。Septimal major second on B7b.mid Play[ヘルプ/ファイル]

自然七度 Harmonic seventh on C.mid play[ヘルプ/ファイル] とは、音程比が正確に7:4 [2](約969セント)の音程である。「七の短七度」(septimal minor seventh[3][4] または「下短七度」(英:subminor seventh[5][6][7] と呼ぶこともある。[8] 通常の[9] 短七度英語版(純正音程では9:5[10](1017.596セント)、平均律では1000セント(25/6:1)の音程比)よりもやや狭く、「より美しい質の」音程である。自然七度は第7倍音と第4倍音(基音の2オクターブ上)の間の音程であるため、倍音列に由来していると考えられる。

純正律やピタゴラス音律に調律されたナチュラル・ホルンでは、この音程を16:9の音程に調整して演奏されることがよくあるが、ベンジャミン・ブリテンの「テノール、ホルンと弦楽のためのセレナード英語版」などの作品では真の7倍音が使われている。[11]

作曲家のベン・ジョンストンは、 音程が七の四分音英語版(49セント、1018 - 969 = 49)だけ低いことを示す臨時記号として小さい「7」を、49セントだけ高いことを示す臨時記号として逆さまの「7」を使用している。そのため、「第七部分音」である自然七度は、ハ長調の場合はBの上に「7」を書いて記譜される。[12][13] また、自然七度は、バーバーショップ音楽英語版の歌手が属七の和音自然七の和音)を協和させる時にも使われており、これがバーバーショップ・スタイルには欠かせない要素になっている。

自然七度は、増六度英語版と比べて七のクレイズマ英語版(7.71セント、ピタゴラスコンマの約3分の1)だけ異なり、[14] 平均律の短七度よりも約六分音英語版(≒31セント)だけ低い。自然七度を用いると、属七の和音が持つ「完全五度への『解決の必要性』」が弱くなったり、なくなったりする。自然七度を用いた属七の和音は主音上(I7)で使用され、「完全に解決した」最終和音として機能する。[15]

脚注[編集]

  1. ^ Haluska, Jan (2003). The Mathematical Theory of Tone Systems, p.xxiii. ISBN 0-8247-4714-3. Harmonic seventh.
  2. ^ Andrew Horner, Lydia Ayres (2002). Cooking with Csound: Woodwind and Brass Recipes, p.131. ISBN 0-89579-507-8.
  3. ^ Gann, Kyle (1998). "Anatomy of an Octave", Just Intonation Explained.
  4. ^ Partch, Harry (1979). Genesis of a Music英語版, p.68. ISBN 0-306-80106-X.
  5. ^ Hermann L. F Von Helmholtz (2007). On the Sensations of Tone, p.456. ISBN 1-60206-639-6.
  6. ^ Royal Society (Great Britain) (1880, digitized Feb 26, 2008). Proceedings of the Royal Society of London, Volume 30, p.531. Harvard University.
  7. ^ Society of Arts (Great Britain) (1877, digitized Nov 19, 2009). Journal of the Society of Arts, Volume 25, p.670. The Society.
  8. ^ Bosanquet, Robert Holford Macdowall (1876). An elementary treatise on musical intervals and temperament, pp. 41-42. Diapason Press; Houten, The Netherlands. ISBN 90-70907-12-7.
  9. ^ "On Certain Novel Aspects of Harmony", p.119. Eustace J. Breakspeare. Proceedings of the Musical Association, 13th Sess., (1886 - 1887), pp. 113-131. Published by: Oxford University Press on behalf of the Royal Musical Association.
  10. ^ "The Heritage of Greece in Music", p.89. Wilfrid Perrett. Proceedings of the Musical Association, 58th Sess., (1931 - 1932), pp. 85-103. Published by: Oxford University Press on behalf of the Royal Musical Association.
  11. ^ Fauvel, John; Flood, Raymond; and Wilson, Robin J. (2006). Music And Mathematics, p.21.22. ISBN 9780199298938.
  12. ^ Douglas Keislar; Easley Blackwood; John Eaton; Lou Harrison; Ben Johnston; Joel Mandelbaum;William Schottstaedt. p.193. "Six American Composers on Nonstandard Tunnings", Perspectives of New Music, Vol. 29, No. 1. (Winter, 1991), pp. 176-211.
  13. ^ Fonville, John. "Ben Johnston's Extended Just Intonation: A Guide for Interpreters", Perspectives of New Music, Vol. 29, No. 2 (Summer, 1991), pp. 106-137.
  14. ^ "On Some Points in the Harmony of Perfect Consonances", p.153. R. H. M. Bosanquet. Proceedings of the Musical Association, 3rd Sess., (1876 - 1877), pp. 145-153. Published by: Oxford University Press on behalf of the Royal Musical Association.
  15. ^ Mathieu, W.A. (1997). Harmonic Experience, pp. 318-319. Inner Traditions International; Rochester, Vermont. ISBN 0-89281-560-4.

参考文献[編集]

Hewitt, Michael. The Tonal Phoenix: A Study of Tonal Progression Through the Prime Numbers Three, Five and Seven. Orpheus-Verlag 2000. ISBN 978-3922626961.