義務論理

出典: フリー百科事典『ウィキペディア(Wikipedia)』
ナビゲーションに移動 検索に移動

義務論理: Deontic logic)は、義務権利などの概念を扱う論理学の一分野である。規範論理とも。義務論理は、義務や権利といった概念の基本的論理機能を捉える形式体系である。典型的な記法としては、OA(A は義務的である、A であるべきだ)と PA(A は許されている、A でもよい)がある。deontic という言葉は古代ギリシャ語の déon(拘束されているもの、適切なもの)を語源とする。

歴史[編集]

義務論理以前[編集]

インドミーマーンサー学派の哲学者や古代ギリシアの哲学者は、義務的概念の形式論理的関係に注目していた[1]。また、後期中世哲学では、義務的概念と真理的概念を比較している[2]ゴットフリート・ライプニッツは自著 Elementa juris naturalis において、licitumillicitumdebitumindifferens の間の論理関係がそれぞれ、possibleimpossiblenecessariumcontingens の間の論理関係に対応していると記している。

Mally の義務論理[編集]

アレクシウス・マイノングの弟子 Ernst Mally は著書 Grundgesetze des Sollens で初めて義務論理の形式体系を提唱し、ホワイトヘッドラッセル命題論理の文法を使って定式化した。Mally の記法では、論理定数 U と ∩、単項作用素 !、二項作用素 f と ∞ が使われ、以下のような意味を持つ。

  • !A = A であるべきだ
  • A f B = A は B を必要とする
  • A ∞ B = A と B は互いを必要とする
  • U = 無条件に義務的である
  • ∩ = 無条件に禁じられている

また、f、∞、∩ は以下のように定義された。

(Def. f.) A f B = A → !B
(Def. ∞.) A ∞ B = (A f B) & (B f A)
(Def. ∩.) ∩ = ¬U

Mally は5つの形式的でない原則を提案した。

  1. A が B を必要とし、B ならば C である場合、A は C を必要とする。
  2. A が B を必要とし、A ならば C である場合、A は B と C を必要とする。
  3. 「A が B を必要とする」とは、「A ならば B である」が義務的である場合だけを意味する。
  4. 無条件に義務的であるなら、義務的である。
  5. 無条件に義務的であることは、自身の否定を必要としない。

彼はこれらの原則を公理として以下のように定式化した。

I. ((A f B) & (B → C)) → (A f C)
II. ((A f B) & (A f C)) → (A f (B & C))
III. (A f B) ↔ !(A → B)
IV. ∃U !U
V. ¬(U f ∩)

これら公理から Mally は 35 の定理を導出したが、その多くは Mally が認めているように奇妙なものとなった。カール・メンガーは定理として !A ↔ A (「A が真である」と「Aであるべき」が同値)が導かれることを示し、! の導入に問題があるとした[3]。メンガー以降、Mally の体系は哲学者からは見向きもされなくなった。Gert Lokhorst は Mally の35の定理とメンガーの定理の証明をスタンフォード哲学百科事典Mally's Deontic Logic として列挙した。

フォン・ウリクトの初期の義務論理[編集]

最初の妥当と思われる義務論理はゲオルク・ヘンリク・フォン・ウリクトが論文 Deontic Logic [4]として発表したものである。フォン・ウリクトは deontic という言葉を英語で初めて義務論理を指す言葉として使った。Mally の論文はドイツ語で Deontik という言葉を使っていた(1926年)。フォン・ウリクトの論文以降、多くの哲学者や計算機科学者がその研究をしたり、義務論理体系を構築するようになった。とはいうものの、義務論理は論理学の中でも議論が多く、共通認識が形成されていない領域の1つである。

1951年のフォン・ウリクトの論理体系は、命題論理に様相論理学を取り入れたものだった。1964年、フォン・ウリクトは A New System of Deontic Logic を著し、そこでは命題論理への回帰が見られ、Mally の論理体系に非常に近くなっている。フォン・ウリクトが規範的推論のために可能性と必然性の様相論理を採用したことは、ライプニッツへの回帰であった。

標準義務論理[編集]

フォン・ウリクトの初期の体系では、義務性と権利性は行為(acts)の特質として扱われた。すなわち、OA は「Aすべきである」、PA は「Aしてもよい」と解釈された。しかし間もなく、命題についての義務論理に可能世界意味論による単純で簡潔な意味論が見つかり、フォン・ウリクトもそれを採用した。命題についての義務論理では、OA は「Aであるべきである」、PA は「Aであってもよい」と解釈される。この義務論理を標準義務論理(standard deontic logic)と呼び、SDLKDDなどと略記される。

構文論[編集]

標準義務論理は、様相論理KDに相当する論理である。したがって、古典論理の公理系に、次の公理と推論規則とを追加したものが標準義務論理の公理系である。

  • 公理K
  • 公理D
  • 必然化規則: が無仮定で証明可能ならば、 もまた無仮定で成立する。

公理Kおよび公理Dを日本語で表現すると、それぞれ次のようになる。

  • 「A ならば B」でなければならないならば、「A でなければならないならば B でなければならない」。
  • A でなければならないならば、A でもよい。

前者の直観的な意味は、を同値な命題に置き換えると理解しやすい。これは例えば、「『慈悲深い人は寄付する』が成り立つべきだ」と「慈悲深くあるべきだ」から「寄付すべきだ」を導く論法に相当する。

また、許可演算子 P と禁止演算子 F は、各々、義務演算子を用いて次のように定義される。

FA は、「A であってはならない」という意味である。

意味論[編集]

標準義務論理の意味論は通常、可能世界意味論によって与えられる。

クリプキモデルであるとする。ここでは可能世界の集合、上の二項関係、は原子式の集合からの冪集合への写像である。また、は「どんなに対しても、あるが存在して」という条件を満たすものとする(すなわち、は継続的な関係であるとする)。論理式の真偽は、このようなクリプキモデルと可能世界に対して相対的に定められる。技術的には以下のように帰納的に定義される。なお、は「はモデルの可能世界において成り立つ」ということを表す。

かつ
または
ならば
となる任意のに対して

この意味論によって意図されているのは、可能世界という概念装置に基づいて義務概念を分析することである。

の直観的な意味は、「から見て、は義務論的に完全な世界(倫理的に理想的な世界、deontically perfect world)である」というものである[5]。したがって、この可能世界意味論によれば、「現実世界において、Aであるべきだ」という文の直観的な意味は、「現実世界から見て義務論的に完全な世界のいずれにおいても、Aである」というものであることになる。同様に、「現実世界において、Aであってもよい」という文の直観的な意味は、「現実世界から見て義務論的に完全な世界のうち少なくとも一つの世界では、Aが成り立っている」というものである。

定理[編集]

標準義務論理の定理には例えば次のようなものが含まれている[6]

量化[編集]

命題論理体系 D には比較的素直な方法で量化を導入して拡張可能である。

義務論理のパラドックス[編集]

標準義務論理が捉えている義務概念と、われわれが実際に持つ義務概念との間には、かなり隔たりがあることが知られている。このことは、以下のような種々のパラドックスによって示される[7]

自由選択許可のパラドックス[編集]

直観的には、「あなたはソファで眠るかベッドで寝るかしてよい」という命題から、「あなたはソファで眠ってもよいし、あなたはベッドで寝てもよい」という命題が論理的に導けるように思われる。ところが、標準義務論理によればそのような推論は認められない。この問題を、自由選択許可(free choice permission)のパラドックスと言う。

上の二つの命題を標準義務論理によって表現すると、それぞれ次のようになる。

直観的には、 であるように思われる。しかし、この論理式は標準義務論理によれば恒真ではない。これがパラドックスである。

パラドックスを解消するために、を公理として追加することも考えられる。しかしこの方策はうまくいかない。この公理を追加した場合、が定理となってしまい、どんな命題も義務ではないことが帰結されてしまう。これではやはり直観に反することになる。

ロスのパラドックス[編集]

ロスのパラドックスとは、「手紙を投函すべきである」という命題から、「手紙を投函するかもしくはそれを焼却するかすべきである」という命題が導けてしまうというパラドックスである。これらニつの命題を標準義務論理によって表現すると、それぞれ次のようになる。

ここで、は古典論理の定理であるから、は標準義務論理の定理である。したがってを含意することが分かる。これは、手紙を投函する義務から、手紙を焼却することによっても達成しうる義務が生ずることになることを意味しており、直観に反する。

よきサマリア人のパラドックス[編集]

以下の二つの命題があるとする。

  • ジョーンズは、強盗の被害者であるスミスを助けなければならない。(It ought to be the case that Jones helps Smith who has been robbed.)
  • スミスは強盗の被害者でなければならない。(It ought to be the case that Smith has been robbed.)

「ジョーンズが強盗の被害者であるスミスを助ける」ということと「ジョーンズはスミスを助ける、かつ、スミスは強盗の被害者である」ということは同値であるはずである。そこで「ジョーンズはスミスを助ける」を h、「スミスは強盗の被害者である」を r と記号化すると、上の二つの命題は次のように表現しうる。

さて、「ジョーンズは、強盗の被害者であるスミスを助けなければならない」は真であるとする。標準義務論理によれば、 から が論理的に導ける。よってこのとき、「スミスは強盗の被害者でなければならない」も真となる。しかし「スミスは強盗の被害者でなければならない」が真であるというのはいかにも奇妙である。このような問題を、よきサマリア人のパラドックスと言う。

サルトルのジレンマ[編集]

サルトルのジレンマとは、直観的には義務同士は衝突しうるように思われるにもかかわらず、標準義務論理によれば義務同士は衝突し得ないことになるというパラドックスである。例えば、「ジョーンズに会うべきである(ジョーンズとそう約束したので)」と「ジョーンズに会うべきでない(スミスとそう約束したので)」という二つの命題があるとする。これらを標準義務論理で表現するとそれぞれ次のようになる。

標準義務論理によれば、は常に成り立つ(義務は許可を含意する)ので、からが導けることになる。ところがは、であることと矛盾する。よって義務同士の衝突は論理的にありえないということになり、直観に反する。

条件的義務に関するパラドックス[編集]

チザムのパラドックス[編集]

チザムのパラドックスは、義務違反を犯したときの義務(contrary-to-duty obligation, CTD obligation)に関するパラドックスである。直観的には、以下の四つの命題がすべて成り立っているような状況は、論理的に可能な状況であるように思われる。

  • ジョーンズは隣人を助けに行くべきである。
  • ジョーンズは、隣人を助けに行くのであれば、助けに行くことを隣人に伝えるべきである。
  • ジョーンズが隣人を助けに行かないのであれば、ジョーンズは助けに行くことを隣人に伝えるべきではない。
  • ジョーンズは隣人を助けに行かない。

これらを標準義務論理によって表現するとそれぞれ以下のようになる。

しかし、この四つの論理式の集合は矛盾している。このことは次のように考えると分かる。一つめの式と二つめの式からが論理的に導ける一方で、三つめの式と四つめの式からが導ける。しかしは両立し得ない。よって上の四つの式の集合は矛盾していることが分かる。よって、上の四つの命題がすべて成り立っているような状況は、論理的にありえない状況であるということになる。これは先の直観と相容れない。

二番目の文をと表現すれば、論理的矛盾の発生は回避することができる。しかしこうすると、今度は別の問題が生ずる。は、であることから論理的に帰結する。よって、「ジョーンズは、隣人を助けに行くのであれば、助けに行くことを隣人に伝えるべきである」という義務は、「ジョーンズは隣人を助けに行かない」という事実から論理的に導けることになる。これはこれで直観に反する。

三番目の文をと表現することによっても、論理的矛盾の発生は回避できる。しかし、これも同様の問題を発生させる。すなわち、今度は「ジョーンズは隣人を助けに行くべきである」という義務から「ジョーンズが隣人を助けに行かないのであれば、ジョーンズは助けに行くことを隣人に伝えるべきではない」という義務が論理的に導けることになってしまうのである。

慈悲深い殺人者のパラドックス[編集]

慈悲深い殺人者のパラドックスもまた、義務違反を犯したときの義務に関するパラドックスである。以下の三つの命題がすべて成り立っているような状況は、論理的に可能な状況であるように思われる。

  • あなたは人を殺すべきではない。
  • もしあなたが人を殺すのであれば、あなたは慈悲深く殺さねばならない。
  • あなたは人を殺した。

これらの命題は、次のように記号化されよう。

ここで、「人を慈悲深く殺すのであれば、人を殺すことになる」という命題、すなわちという命題は、真であると仮定してよいであろう。ところが、という論理式の集合は論理的に矛盾している。したがって、上の三つの命題(およびという前提)が同時に成り立っているような状況は論理的にありえない状況であることになる。しかしこれは直観に反する。

二項義務論理[編集]

義務論理の重要な問題として、条件付き義務をどう正しく表現するかという問題がある。すなわち、「あなたがタバコを吸うなら、あなたは灰皿を使うべきだ」のような文である。以下の2つの表現のどちらが適切かは明確ではない。

1つめの表現は、タバコを吸わない場合、第二行為がどうであれ全体として空虚な真(vacuously truth)となる(Von Wright 1956, cited in Aqvist 1994)。2つめの表現では、以下の「慈悲深い殺人のパラドックス」に陥る。

1. あなたが人を殺すなら、あなたは慈悲深く殺さねばならない。
2. あなたは人を殺した。
1, 2よりよってあなたは慈悲深く殺さねばならない。

一見妥当そうな論法だが、文脈を無視して結論の「あなたは慈悲深く殺さねばならない」だけ見ると慈悲深い殺人を推奨しているように読めてしまう。

この問題に対処するため、二項義務論理(dyadic deontic logic)が構築された。これには以下のような二項義務作用素が定義されている。

は、「B が与えられたとき、A は義務的である」を意味する。
は、「B が与えられたとき、A は権利的である」を意味する。

この記法は条件付き確率を基にしている。二項義務論理は標準義務論理の問題をいくつか解決するが、問題が全くないわけではない。

その他[編集]

他にも様々な義務論理の体系があり、例えば、非単調義務論理、矛盾許容義務論理、動的義務論理などがある。

Jørgensen のジレンマ[編集]

義務論理には Jørgensen のジレンマと呼ばれる問題がある[8]。一般に規範は真偽を判定できないが、真理や真理値は論理学の基礎である。考えられる解答としては以下の2つがある。

  • 義務論理は規範命題を扱うのであって規範そのものを扱うのではない。
  • 真理という概念が異なると考えられる。すなわち、言語行為論で定義されるような、正当性(validity)や成功(success)に相当するものと考える。

関連項目[編集]

脚注[編集]

  1. ^ Huisjes, C. H., 1981, "Norms and logic," Thesis, University of Groningen.
  2. ^ Knuuttila, Simo, 1981, “The Emergence of Deontic Logic in the Fourteenth Century,” in New Studies in Deontic Logic, Ed. Hilpinen, Risto, pp. 225-248, University of Turku, Turku, Finland: D. Reidel Publishing Company.
  3. ^ Menger, Karl, 1939, "A logic of the doubtful: On optative and imperative logic," in Reports of a Mathematical Colloquium, 2nd series, 2nd issue, pp. 53-64, Notre Dame, Indiana: Indiana University Press.
  4. ^ von Wright (1951)
  5. ^ Hilpinen (2001, p. 163)。
  6. ^ 渡辺 (1985, p. 125)。
  7. ^ McNamara (2006)、第四節。
  8. ^ Jørgensen (1937-38)

参考文献[編集]

外部リンク[編集]