キャブタクシー数

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索

n 番目のキャブタクシー数(キャブタクシーすう、cabtaxi number、Cabtaxi(n)と表記される)とは、2つの異なる立方数の和として n 通りに表される最小の自然数と定義される。ここでの立方数は全ての整数(正,負,0)を取りうる。立方数が自然数のみに限定されればタクシー数になる。全ての n に対してキャブタクシー数が存在する(タクシー数は全ての n に対して存在することが証明されているため)。現在は10個のキャブタクシー数が知られている(オンライン整数列大辞典の数列 A047696を参照)。

既知のキャブタクシー数[編集]

\begin{matrix}\mathrm{Cabtaxi}(1)&=&1&=&1^3 \pm 0^3\end{matrix}
\begin{matrix}\mathrm{Cabtaxi}(2)&=&91&=&3^3 + 4^3 \\&&&=&6^3 - 5^3\end{matrix}
\begin{matrix}\mathrm{Cabtaxi}(3)&=&728&=&6^3 + 8^3 \\&&&=&9^3 - 1^3 \\&&&=&12^3 - 10^3\end{matrix}
\begin{matrix}\mathrm{Cabtaxi}(4)&=&2741256&=&108^3 + 114^3 \\&&&=&140^3 - 14^3 \\&&&=&168^3 - 126^3 \\&&&=&207^3 - 183^3\end{matrix}
\begin{matrix}\mathrm{Cabtaxi}(5)&=&6017193&=&166^3 + 113^3 \\&&&=&180^3 + 57^3 \\&&&=&185^3 - 68^3 \\&&&=&209^3 - 146^3 \\&&&=&246^3 - 207^3\end{matrix}
\begin{matrix}\mathrm{Cabtaxi}(6)&=&1412774811&=&963^3 + 804^3 \\&&&=&1134^3 - 357^3 \\&&&=&1155^3 - 504^3 \\&&&=&1246^3 - 805^3 \\&&&=&2115^3 - 2004^3 \\&&&=&4746^3 - 4725^3\end{matrix}
\begin{matrix}\mathrm{Cabtaxi}(7)&=&11302198488&=&1926^3 + 1608^3 \\&&&=&1939^3 + 1589^3 \\&&&=&2268^3 - 714^3 \\&&&=&2310^3 - 1008^3 \\&&&=&2492^3 - 1610^3 \\&&&=&4230^3 - 4008^3 \\&&&=&9492^3 - 9450^3\end{matrix}
\begin{matrix}\mathrm{Cabtaxi}(8)&=&137513849003496&=&22944^3 + 50058^3 \\&&&=&36547^3 + 44597^3 \\&&&=&36984^3 + 44298^3 \\&&&=&52164^3 - 16422^3 \\&&&=&53130^3 - 23184^3 \\&&&=&57316^3 - 37030^3 \\&&&=&97290^3 - 92184^3 \\&&&=&218316^3 - 217350^3\end{matrix}
\begin{matrix}\mathrm{Cabtaxi}(9)&=&424910390480793000&=&645210^3 +  538680^3 \\&&&=&649565^3 +  532315^3 \\&&&=&752409^3 -  101409^3 \\&&&=&759780^3 -  239190^3 \\&&&=&773850^3 -  337680^3 \\&&&=&834820^3 -  539350^3 \\&&&=&1417050^3 - 1342680^3 \\&&&=&3179820^3 - 3165750^3 \\&&&=&5960010^3 - 5956020^3\end{matrix}
\begin{matrix}\mathrm{Cabtaxi}(10)&=&933528127886302221000&=&77480130^3 - 77428260^3 \\&&&=&41337660^3 - 41154750^3 \\&&&=&18421650^3 - 17454840^3 \\&&&=&10852660^3 - 7011550^3 \\&&&=&10060050^3 - 4389840^3 \\&&&=&9877140^3 - 3109470^3 \\&&&=&9781317^3 - 1318317^3 \\&&&=&9773330^3 - 84560^3 \\&&&=&8444345^3 + 6920095^3 \\&&&=&8387730^3 + 7002840^3\end{matrix}

Cabtaxi(5),Cabtaxi(6),及びCabtaxi(7)はランドル・L・ラスバンによって、Cabtaxi(8)はダニエル・J・バーンスタインによって発見された。またバーンスタインの発見方法を利用して、Cabtaxi(9)がダンカン・ムーアによって発見された。 Cabtaxi(10)は当初、2006年にクリスチャン・ボイヤーによってCabtaxi(10)が取りうる値の上限として示され、ウーヴェ・ホラーバッハによってこれが実際にCabtaxi(10)であることが証明された。このことは2008年5月16日にメーリングリストNMBRTHRYにて報告された。

関連項目[編集]

外部リンク[編集]