「曖昧さ回避 (経済学)」の版間の差分

出典: フリー百科事典『ウィキペディア(Wikipedia)』
削除された内容 追加された内容
Munasca (会話 | 投稿記録)
新しいページ: '経済学、または意思決定理論における'''曖昧さ回避'''(あいまいさかいひ、{{lang-en-short|ambiguity aversion}})とは、[...'
(相違点なし)

2015年10月15日 (木) 15:10時点における版

経済学、または意思決定理論における曖昧さ回避(あいまいさかいひ、: ambiguity aversion)とは、確率が未知であるような事象を回避しようとする選好。曖昧さ回避を持つ選好は後述のように期待効用関数としての表現を持たないことが知られている。古くはフランク・ナイト[1]ジョン・メイナード・ケインズ[2]なども同種の概念を考察しているが、ダニエル・エルズバーグにより曖昧さ回避を持つ選好の具体例が示された[3]。特に1980年代以降、曖昧さ回避を持つ選好の数理モデル化が進んでいる。

エルズバーグのパラドックス

ダニエル・エルズバーグが1961年に発表した論文で提示したいくつかの数値例は曖昧さ回避を持つ選好の具体例の一つである[3]。特にこれらの数値例を指してエルズバーグのパラドックス: The Ellsberg paradox)と呼ぶ。 ここではエルズバーグの論文に記載されている3色の玉についての数値例について記述する。

ある壺があり、その壺の中には30個の赤い玉(red ball)と60個の黒(blcak ball)、もしくは黄色の玉(yellow ball)が入っているとする。黒い玉と黄色の玉がどのような比率で赤ではない60個の玉の中に含まれるかは分からないとする。ここで次の4つのギャンブルを考える。

  • I. 壺から玉を一つランダムに取り出し、赤い玉ならば100ドルが得られ、それ以外の玉ならば何ももらえない。
  • II. 壺から玉を一つランダムに取り出し、黒い玉ならば100ドルが得られ、それ以外の玉ならば何ももらえない。
  • III. 壺から玉を一つランダムに取り出し、赤、もしくは黄色の玉ならば100ドルが得られ、黒い玉ならば何ももらえない。
  • IV. 壺から玉を一つランダムに取り出し、黒、もしくは黄色の玉ならば100ドルが得られ、赤い玉ならば何ももらえない。

さらに次のような質問を考える。

  • Q1. ギャンブルIとIIのどちらをあなたは好ましいと思うか。
  • Q2. ギャンブルIIIとIVのどちらをあなたは好ましいと思うか。

エルズバーグは当該論文中で、Q1についてはIをIIより好む傾向があり、Q2についてはIVをIIIより好む傾向があると述べた。だがIIよりIを好み、IIIよりIVを好む選好は期待効用理論においては正当化されない。 を括弧内の事象が起こる(質問の回答者が考える)主観的な確率として各ギャンブルの期待値を計算すると

  • I.
  • II.
  • III.
  • IV.

となる。よって回答者が期待値で意思決定を行うと考えると、IIよりIを好むならば、 が成り立ち、IIIよりIVを好むならば、 が成り立つ。しかし、ある色の玉を引くということはそれぞれ背反事象なので確率の加法性から という関係は

という関係と同値である。したがってIIIよりIVを好むことは ということを意味する。しかし、これは明らかにIIよりIを好むことに矛盾する。つまりこの質問の回答者は期待値で意思決定を行っていないということが分かる。

エルズバーグが論文中で述べているが、IIよりIを好み、IIIよりIVを好むという選好はレオナルド・サベージ英語版によって定式化された sure thing principle を満たさない[4]。sure thing principle は主観的期待効用関数による表現を可能にする為に必要な、選好が満たすべき公理の一つであるので、上記のような選好を表現できる期待効用関数は存在しないのである。

この例がどのような選好を表しているかの一つの説明として回答者は確率が事前には分からないという曖昧さを回避しようとしているという考え方をエルズバーグは行っている。質問Q1とQ2でそれぞれ好ましいとされる傾向のあるギャンブルIとIVは100ドルを手に入れることが出来る確率が回答者には事前に分かっている(Iは1/3、IVは2/3)。一方、ギャンブルIIとIIIについては100ドルを手に入れることが出来る確率は回答者には事前には分からない。よって回答者は事前に確率が分からないという曖昧さを回避しようとしているのであるとエルズバーグは結論づけている。

理論モデル

曖昧さ回避を持つ選好を表現できる効用関数はいくつか提案されている。

マクシミン期待効用関数

イツァーク・ギルボアデビット・シュマイドラー英語版によって提案されたマクシミン期待効用関数(: maxmin expected utility)は次のように表される[5]

ここで は意思決定者の選択肢を表し、確率測度 は確率測度からなる集合である。 よって意思決定者の効用最大化問題は

と表される。 は確率測度 の下での期待効用を表すので、直感的には、この効用最大化問題は最も悪い場合の確率での期待効用値を最も良くする選択肢を選ぶ問題となっていると言える。ギルボアとシュマイドラーはある種の曖昧さ回避を持つ選好がマクシミン期待効用関数として表現可能であることを示した。

マクシミン期待効用関数は Larry Epstein とシュマイドラーの研究[6]、Zengjing Chen と Epstein の研究[7]などにより動学的拡張がなされている。

非加法的測度を用いた効用関数

そもそもエルズバーグのパラドックスで矛盾を起こす原因となったのは、排反事象同士の和集合で表される事象が起こる確率はそれぞれの背反事象が起こる確率の和に等しいという確率の加法性である。よってこの確率の加法性という性質を必ずしも満たさない効用関数として非加法的測度を用いた効用関数が提案された。デビット・シュマイドラーによって提案された非加法的測度を用いた効用関数は次のように表される[8]

ここで は意思決定者の選択肢を表し、 は非加法的測度を表す。 は加法性を満たさないので測度論で言うところの測度ではない。よって右辺は表記自体は期待効用関数と同じ形をしているが、意味合いとしては期待効用関数とは異なる。 シュマイドラーはある種の曖昧さ回避を持つ選好が非加法的測度を用いた効用関数として表現可能であることを示した。

非加法的測度を用いた効用関数の例としてエイモス・トベルスキーダニエル・カーネマンによって提案された累積プロスペクト理論に基づく効用関数がある[9]。累積プロスペクト理論による効用関数では非加法的測度としてショケ積分英語版が用いられている。

脚注

  1. ^ Knight, Frank H. (1921), Risk, Uncertainty, and Profit, New York: Houghton, Mifflin 
  2. ^ Keynes, John M. (1921), A Treatise on Probability, London: Macmillan and Co 
  3. ^ a b Ellsberg, Daniel (1961), “Risk, Ambiguity, and the Savage Axioms”, Quarterly Journal of Economics 75 (4): 643–669, doi:10.2307/1884324, JSTOR 1884324, https://jstor.org/stable/1884324 
  4. ^ Savage, Leonard J. (1954), The Foundations of Statistics, New York: Wiley 
  5. ^ Gilboa, Itzhak; Schmeidler, David (1989), “Maxmin Expected Utility with Non-unique Prior”, Journal of Mathematical Economics 18 (2): 141–153, doi:10.1016/0304-4068(89)90018-9 
  6. ^ Epstein, Larry G; Schmeidler, David (2003), “Recursive Multiple-priors”, Journal of Economic Theory 113 (1): 1-31, doi:10.1016/S0022-0531(03)00097-8 
  7. ^ Chen, Zengjing; Epstein, Larry G (2002), “Ambiguity, Risk, and Asset Returns in Continuous Time”, Econometrica 70 (4): 1403-1443, doi:10.1111/1468-0262.00337, JSTOR 3082003, https://jstor.org/stable/3082003 
  8. ^ Schmeidler, David (1989), “Subjective Probability and Expected Utility without Additivity”, Econometrica 57 (3): 571-587, doi:10.2307/1911053, JSTOR 1911053, https://jstor.org/stable/1911053 
  9. ^ Tversky, Amos; Kahneman, Daniel (1992), “Advances in Prospect Theory: Cumulative Representation of Uncertainty”, Journal of Risk and Uncertainty 5 (4): 297-323, doi:10.1007/BF00122574 

関連項目