「球」の版間の差分

出典: フリー百科事典『ウィキペディア(Wikipedia)』
削除された内容 追加された内容
→‎3次元空間の球: 球の一部に関する用語の解説
4行目: 4行目:


== 3次元空間の球 ==
== 3次元空間の球 ==
球と平面が交わるとき、その交わりは平面上の[[円]]となって現れる。こを球と平面の「交円と呼ぶ。特に、平面球の中心を通るとき、交わりは最大となり、このときの交円を「大円」と呼び、球の中心から平面立て垂線を「大円の軸」と呼ぶ。大円の半径は、球の半径に等しい。それ以外の円を「小円」と呼ぶ
* 球と平面が接するとき、その交わりは平面上の1点となって現れる。この点を球と平面の「接点」、平面を「球の接平面」と呼ぶ。球の中心から接点引いた半径は、接平面を直する


* 球と平面が交わるとき、その交わりは平面上の[[円]]となって現れる。この円を球と平面の「交円」、平面を「球の割平面」と呼ぶ。特に、平面が球の中心を通るとき、交わりは最大となり、このときの交円を「大円」と呼ぶ。大円の半径は、球の半径に等しい。球面上を通って、球面上の2点を結ぶ経路の最短は、大円の弧となる。大円以外の交円を「小円」とよぶ。交円の中心から割平面に立てた垂線を「交円の軸」と呼ぶ。交円の軸は、球の中心を通る。割平面によって切り取られる[[球面]]の一部を「球冠」といい、球冠と割平面によって囲まれた立体を「球欠」と呼ぶ。割平面が球の中心を通るとき、球冠を「半球面」、球欠を「半球」と呼ぶ。

* 球の中心と小円を結ぶ円錐面によって切り取られる球の一部を「球分」と呼ぶ。また、球面上の閉じた図形の周と球の中心を結ぶ母線によって切り取られる球の一部を、広く「球分」と呼ぶことがある。

* 球と平行な2平面が交わるとき、その交わりは互いに平行な2円となって現れる。2平面にはさまれた[[球面]]の一部を「球帯」といい、球冠とこれら2平面によって囲まれた立体を「球台」と呼ぶ。

* 3次元球の接吻数、すなわち一つの単位球に一度に接することのできる単位球の最大個数は 12 である。

== 3次元空間の球の計量 ==
以下、''S'' は[[表面積]]、''V'' は[[体積]]、π は[[円周率]]、''r'' は[[半径]]を表す。
以下、''S'' は[[表面積]]、''V'' は[[体積]]、π は[[円周率]]、''r'' は[[半径]]を表す。


41行目: 50行目:
=== その他の性質 ===
=== その他の性質 ===
* 球の体積を ''r'' で微分すると球の表面積が、逆に球の表面積を積分定数を0として ''r'' で積分すると球の体積が得られる。
* 球の体積を ''r'' で微分すると球の表面積が、逆に球の表面積を積分定数を0として ''r'' で積分すると球の体積が得られる。
* 3次元球の[[接吻数]]、すなわち一つの[[単位球]]に一度に接することのできる単位球の最大個数は 12 である。


== n次元空間の球 ==
== n次元空間の球 ==

2013年2月14日 (木) 09:01時点における版

(きゅう、: ball)あるいは球体(きゅうたい、: solid sphere)とは、空間上のある 一定点から一定の距離にあるすべての点の集合である球面 (sphere) とその内部にある点からなる集合。ここで用いた定点を「中心」、一定の距離を「半径」と呼ぶ。中心を通る直線から、球面が切り取る線分を「直径」と呼び、その長さは半径の2倍に等しい。球面のことを「の表面」と呼ぶことがある。通常は3次元空間にあるものを指す場合が多い。

3次元空間の球

  • 球と平面が接するとき、その交わりは平面上の1点となって現れる。この点を球と平面の「接点」、平面を「球の接平面」と呼ぶ。球の中心から接点に引いた半径は、接平面を直交する。
  • 球と平面が交わるとき、その交わりは平面上のとなって現れる。この円を球と平面の「交円」、平面を「球の割平面」と呼ぶ。特に、平面が球の中心を通るとき、交わりは最大となり、このときの交円を「大円」と呼ぶ。大円の半径は、球の半径に等しい。球面上を通って、球面上の2点を結ぶ経路の最短は、大円の弧となる。大円以外の交円を「小円」とよぶ。交円の中心から割平面に立てた垂線を「交円の軸」と呼ぶ。交円の軸は、球の中心を通る。割平面によって切り取られる球面の一部を「球冠」といい、球冠と割平面によって囲まれた立体を「球欠」と呼ぶ。割平面が球の中心を通るとき、球冠を「半球面」、球欠を「半球」と呼ぶ。
  • 球の中心と小円を結ぶ円錐面によって切り取られる球の一部を「球分」と呼ぶ。また、球面上の閉じた図形の周と球の中心を結ぶ母線によって切り取られる球の一部を、広く「球分」と呼ぶことがある。
  • 球と平行な2平面が交わるとき、その交わりは互いに平行な2円となって現れる。2平面にはさまれた球面の一部を「球帯」といい、球冠とこれら2平面によって囲まれた立体を「球台」と呼ぶ。
  • 3次元球の接吻数、すなわち一つの単位球に一度に接することのできる単位球の最大個数は 12 である。

3次元空間の球の計量

以下、S表面積V体積、π は円周率r半径を表す。

表面積

証明例1
半径 r の球は半円 x 軸周りに回転することによって得られる。ある x から x + Δx にかけての微小な表面積 ΔS
となる。したがって表面積 S
証明例2
カヴァリエリの原理による表面積の求め方の説明図
カヴァリエリの原理を用いて、球の表面積は、その球が内接する円柱の側面の面積と等しいというものがある。
円柱の中心と鉛直に、極限まで薄く断面のスライスをとったとき、スライスの位置をθ(ラジアン)、幅をdθ(ラジアン)、球および円柱の半径をrとすると、球の表面のスライスの面積はrdθ×2π(rcosθ)となる。円柱側面のスライスはrdθcosθ×2πrとなり、これらは等しい。すなわち内接する円柱の側面積に等しい。よって2r×2πr=4πr2
証明例3
またこの幅rdθのスライスを回転させたものは、円周2π(r・cosθ)であり、面積は
である。これを積分すると

体積

「身 (3) の上 (/) に心 (4) 配 (π) ある (r) 参上(3乗)」と覚える。
証明例
半球の底面を z = 0 とすると、z 軸と直交する球内の平面の面積 S(z) は半径 の面積に等しい。したがって S(z) = π ( r2 - z2) であり、半球の体積は
球の体積は半球の体積の2倍なので

その他の性質

  • 球の体積を r で微分すると球の表面積が、逆に球の表面積を積分定数を0として r で積分すると球の体積が得られる。

n次元空間の球

  • 表面積
  • 体積

ただし Γ(z ) はオイラーガンマ関数である。

0次元球は点、1次元球は長さ 2r の線分、2次元球は半径 r の円になる。

2次元球(円)や3次元球(球)と同様、体積を r で微分すれば表面積が、逆に表面積を積分定数を 0 として r で積分すれば体積が得られる。

n 次元単位球の体積は n = 5 のとき、表面積は n = 7 のときにそれぞれ最大値をとり、それ以降は n の増加にともないどちらも急激に減少して 0 に収束する。

関連項目