EIF4EBP1

出典: フリー百科事典『ウィキペディア(Wikipedia)』
EIF4EBP1
PDBに登録されている構造
PDBオルソログ検索: RCSB PDBe PDBj
PDBのIDコード一覧

1EJ4, 1WKW, 2JGB, 2JGC, 2V8W, 2V8X, 2V8Y, 3HXG, 3HXI, 3M93, 3M94, 3U7X, 4UED, 5BXV

識別子
記号EIF4EBP1, 4E-BP1, 4EBP1, BP-1, PHAS-I, eukaryotic translation initiation factor 4E binding protein 1
外部IDOMIM: 602223 MGI: 103267 HomoloGene: 3021 GeneCards: EIF4EBP1
遺伝子の位置 (ヒト)
8番染色体 (ヒト)
染色体8番染色体 (ヒト)[1]
8番染色体 (ヒト)
EIF4EBP1遺伝子の位置
EIF4EBP1遺伝子の位置
バンドデータ無し開始点38,030,534 bp[1]
終点38,060,365 bp[1]
遺伝子の位置 (マウス)
8番染色体 (マウス)
染色体8番染色体 (マウス)[2]
8番染色体 (マウス)
EIF4EBP1遺伝子の位置
EIF4EBP1遺伝子の位置
バンドデータ無し開始点27,750,357 bp[2]
終点27,766,702 bp[2]
RNA発現パターン
さらなる参照発現データ
遺伝子オントロジー
分子機能 translation repressor activity
血漿タンパク結合
eukaryotic initiation factor 4E binding
translation initiation factor binding
protein phosphatase 2A binding
細胞の構成要素 細胞質基質
細胞質
細胞核
高分子複合体
glutamatergic synapse
postsynaptic cytosol
生物学的プロセス negative regulation of translation
negative regulation of translational initiation
positive regulation of mitotic cell cycle
TOR signaling
IRES-dependent translational initiation of linear mRNA
regulation of translation
insulin receptor signaling pathway
デキサメタゾン刺激に対する細胞応答
G1/S transition of mitotic cell cycle
response to ischemia
肺発生
negative regulation of protein-containing complex assembly
response to ethanol
cellular response to hypoxia
response to amino acid starvation
出典:Amigo / QuickGO
オルソログ
ヒトマウス
Entrez
Ensembl
UniProt
RefSeq
(mRNA)

NM_004095

NM_007918

RefSeq
(タンパク質)

NP_004086

NP_031944

場所
(UCSC)
Chr 8: 38.03 – 38.06 MbChr 8: 27.75 – 27.77 Mb
PubMed検索[3][4]
ウィキデータ
閲覧/編集 ヒト閲覧/編集 マウス

EIF4EBP1(eukaryotic translation initiation factor 4E-binding protein 1)または4E-BP1は、ヒトではEIF4EBP1遺伝子にコードされるタンパク質である[5]。4E-BP1は翻訳開始因子eIF4Eに結合することでキャップ依存的翻訳を阻害する。4E-BP1はリン酸化によってeIF4Eから放出され、その結果キャップ依存的翻訳が継続されてタンパク質合成速度が高まる[6]

リン酸化[編集]

リン酸化された4E-BP1は、上流のシグナル伝達(mTORシグナル)の活性化のマーカーとなると考えられている。4E-BP1には7カ所のリン酸化部位が存在し、中でも重要なのはリン酸化の開始部位であるThr37/Thr46、2番目の部位であるThr70、そして最終部位であるSer65である。しかしながら、Ser65とThr70のリン酸化だけでは4E-BP1による翻訳阻害の遮断には不十分であり、複数のリン酸化イベントが組み合わさることでタンパク質合成速度の上昇が引き起こされていることが示唆されている[7]

機能[編集]

4E-BP1はeIF4Eと直接相互作用する。eIF4Eは、リボソーム40SサブユニットをmRNAの5'末端へリクルートするタンパク質複合体(eIF4F)の限定因子となっている。4E-BP1とeIF4Eの相互作用により、この複合体の組み立てが阻害され、翻訳は抑制される。4E-BP1のリン酸化は紫外線照射やインスリンシグナルなどさまざまなシグナルに応答して生じ、eIF4Eからの解離を引き起こしてキャップ依存的翻訳を活性化する[8]

4E-BP1の高レベルのリン酸化はヒトのがんで幅広く報告されており、そのいくつかでは予後不良と関係している[9]

相互作用[編集]

4E-BP1は次に挙げる因子と相互作用することが示されている。

出典[編集]

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000187840 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000031490 - Ensembl, May 2017
  3. ^ Human PubMed Reference:
  4. ^ Mouse PubMed Reference:
  5. ^ “Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5'-cap function”. Nature 371 (6500): 762–767. (November 1994). Bibcode1994Natur.371..762P. doi:10.1038/371762a0. PMID 7935836. 
  6. ^ Pause, Arnim; Belsham, Graham J.; Gingras, Anne-Claude; Donzé, Olivier; Lin, Tai-An; Lawrence, John C.; Sonenberg, Nahum (1994-10-27). “Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5'-cap function”. Nature 371 (6500): 762–767. doi:10.1038/371762a0. ISSN 0028-0836. http://dx.doi.org/10.1038/371762a0. 
  7. ^ Gingras, Anne-Claude; Raught, Brian; Gygi, Steven P.; Niedzwiecka, Anna; Miron, Mathieu; Burley, Stephen K.; Polakiewicz, Roberto D.; Wyslouch-Cieszynska, Aleksandra et al. (2001-11-01). “Hierarchical phosphorylation of the translation inhibitor 4E-BP1”. Genes & Development 15 (21): 2852–2864. doi:10.1101/gad.912401. ISSN 0890-9369. http://dx.doi.org/10.1101/gad.912401. 
  8. ^ EIF4EBP1 eukaryotic translation initiation factor 4E binding protein 1 [Homo sapiens (human) - Gene - NCBI]”. www.ncbi.nlm.nih.gov. 2023年11月11日閲覧。
  9. ^ Qin, Xiaoyu; Jiang, Bin; Zhang, Yanjie (18 March 2016). “4E-BP1, a multifactor regulated multifunctional protein”. Cell Cycle 15 (6): 781–786. doi:10.1080/15384101.2016.1151581. PMC 4845917. PMID 26901143. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4845917/. 
  10. ^ “Towards a proteome-scale map of the human protein-protein interaction network”. Nature 437 (7062): 1173–8. (October 2005). Bibcode2005Natur.437.1173R. doi:10.1038/nature04209. PMID 16189514. 
  11. ^ “Large-scale mapping of human protein-protein interactions by mass spectrometry”. Mol. Syst. Biol. 3: 89. (2007). doi:10.1038/msb4100134. PMC 1847948. PMID 17353931. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1847948/. 
  12. ^ “The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins”. Mol. Cell. Biol. 15 (9): 4990–7. (September 1995). doi:10.1128/MCB.15.9.4990. PMC 230746. PMID 7651417. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC230746/. 
  13. ^ “Disruption of parallel and converging signaling pathways contributes to the synergistic antitumor effects of simultaneous mTOR and EGFR inhibition in GBM cells”. Neoplasia 7 (10): 921–9. (October 2005). doi:10.1593/neo.05361. PMC 1502028. PMID 16242075. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1502028/. 
  14. ^ a b “Different roles for the TOS and RAIP motifs of the translational regulator protein 4E-BP1 in the association with raptor and phosphorylation by mTOR in the regulation of cell size”. Genes Cells 11 (7): 757–66. (July 2006). doi:10.1111/j.1365-2443.2006.00977.x. PMID 16824195. 
  15. ^ “Mutational analysis of sites in the translational regulator, PHAS-I, that are selectively phosphorylated by mTOR”. FEBS Lett. 453 (3): 387–90. (June 1999). doi:10.1016/s0014-5793(99)00762-0. PMID 10405182. 
  16. ^ “Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors”. Eur. J. Biochem. 269 (12): 3076–85. (June 2002). doi:10.1046/j.1432-1033.2002.02992.x. PMID 12071973. 
  17. ^ “Regulation of the rapamycin and FKBP-target 1/mammalian target of rapamycin and cap-dependent initiation of translation by the c-Abl protein-tyrosine kinase”. J. Biol. Chem. 275 (15): 10779–87. (April 2000). doi:10.1074/jbc.275.15.10779. PMID 10753870. 
  18. ^ “Functional interaction between RAFT1/FRAP/mTOR and protein kinase cdelta in the regulation of cap-dependent initiation of translation”. EMBO J. 19 (5): 1087–97. (March 2000). doi:10.1093/emboj/19.5.1087. PMC 305647. PMID 10698949. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC305647/. 
  19. ^ “Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism”. Genes Dev. 13 (11): 1422–37. (June 1999). doi:10.1101/gad.13.11.1422. PMC 316780. PMID 10364159. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC316780/. 
  20. ^ “Hypoxia inhibits protein synthesis through a 4E-BP1 and elongation factor 2 kinase pathway controlled by mTOR and uncoupled in breast cancer cells”. Mol. Cell. Biol. 26 (10): 3955–65. (May 2006). doi:10.1128/MCB.26.10.3955-3965.2006. PMC 1489005. PMID 16648488. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1489005/. 
  21. ^ “Structural and thermodynamic behavior of eukaryotic initiation factor 4E in supramolecular formation with 4E-binding protein 1 and mRNA cap analogue, studied by spectroscopic methods”. Chem. Pharm. Bull. 49 (10): 1299–303. (October 2001). doi:10.1248/cpb.49.1299. PMID 11605658. 
  22. ^ “Fed-state clamp stimulates cellular mechanisms of muscle protein anabolism and modulates glucose disposal in normal men”. Am. J. Physiol. Endocrinol. Metab. 296 (1): E105–13. (January 2009). doi:10.1152/ajpendo.90752.2008. PMC 2636991. PMID 18957614. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2636991/. 
  23. ^ a b “TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function”. Curr. Biol. 13 (10): 797–806. (May 2003). doi:10.1016/s0960-9822(03)00329-4. PMID 12747827. 
  24. ^ a b “Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action”. Cell 110 (2): 177–89. (July 2002). doi:10.1016/s0092-8674(02)00833-4. PMID 12150926. 
  25. ^ a b “Activation of mammalian target of rapamycin (mTOR) by insulin is associated with stimulation of 4EBP1 binding to dimeric mTOR complex 1”. J. Biol. Chem. 281 (34): 24293–303. (August 2006). doi:10.1074/jbc.M603566200. PMID 16798736. 
  26. ^ a b “Distinct signaling events downstream of mTOR cooperate to mediate the effects of amino acids and insulin on initiation factor 4E-binding proteins”. Mol. Cell. Biol. 25 (7): 2558–72. (April 2005). doi:10.1128/MCB.25.7.2558-2572.2005. PMC 1061630. PMID 15767663. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1061630/. 
  27. ^ “PLD2 forms a functional complex with mTOR/raptor to transduce mitogenic signals”. Cell. Signal. 18 (12): 2283–91. (December 2006). doi:10.1016/j.cellsig.2006.05.021. PMID 16837165. 
  28. ^ “Target of rapamycin (TOR)-signaling and RAIP motifs play distinct roles in the mammalian TOR-dependent phosphorylation of initiation factor 4E-binding protein 1”. J. Biol. Chem. 278 (42): 40717–22. (October 2003). doi:10.1074/jbc.M308573200. PMID 12912989. 
  29. ^ “The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif”. J. Biol. Chem. 278 (18): 15461–4. (May 2003). doi:10.1074/jbc.C200665200. PMID 12604610. 
  30. ^ “mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery”. Cell 110 (2): 163–75. (July 2002). doi:10.1016/s0092-8674(02)00808-5. PMID 12150925. 
  31. ^ “Rheb binds and regulates the mTOR kinase”. Curr. Biol. 15 (8): 702–13. (April 2005). doi:10.1016/j.cub.2005.02.053. PMID 15854902. 
  32. ^ “Carboxyl-terminal region conserved among phosphoinositide-kinase-related kinases is indispensable for mTOR function in vivo and in vitro”. Genes Cells 5 (9): 765–75. (September 2000). doi:10.1046/j.1365-2443.2000.00365.x. PMID 10971657. 
  33. ^ “RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1”. Proc. Natl. Acad. Sci. U.S.A. 95 (4): 1432–7. (February 1998). Bibcode1998PNAS...95.1432B. doi:10.1073/pnas.95.4.1432. PMC 19032. PMID 9465032. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC19032/. 

関連文献[編集]