ペアノの公理

出典: フリー百科事典『ウィキペディア(Wikipedia)』

これはこのページの過去の版です。2001:268:c0cb:b65e:fd1b:f89d:798e:fddc (会話) による 2020年8月26日 (水) 14:48個人設定で未設定ならUTC)時点の版 (→‎存在と一意性)であり、現在の版とは大きく異なる場合があります。

ペアノの公理(ペアノのこうり、: Peano axioms) とは、自然数全体を公理化したものである。1891年に、ジュゼッペ・ペアノによって定義された。

定義

ペアノの公理は以下の様に定義される。

自然数は次の5条件を満たす。

  1. 自然数 0 が存在する。
  2. 任意の自然数 a にはその後者 (successor)、suc(a) が存在する(suc(a) は a + 1 の "意味")。
  3. 0 はいかなる自然数の後者でもない(0 より前の自然数は存在しない)。
  4. 異なる自然数は異なる後者を持つ:ab のとき suc(a) ≠ suc(b) となる。
  5. 0 がある性質を満たし、a がある性質を満たせばその後者 suc(a) もその性質を満たすとき、すべての自然数はその性質を満たす。

5番目の公理は、数学的帰納法の原理である。 また、後述するとおり集合論における標準的な構成では、0 を空集合として定義する。

さらに形式的には、ペアノシステム を次の条件を満たす順序つきの三つ組みとして定義する:

  • が次を満たせば

ペアノの公理は以下の図にまとめることができる:

ここで、各 f(x), ff(x) ), fff(x) ) ), ... は明確に区別可能。

存在と一意性

集合論における標準的な構成によって、ペアノシステムの条件を満たす集合が存在することを示せる。 まず、後者関数を定義する; 任意の集合 a に対してその後者を suc(a) := a ∪ {a} と定義する。 集合 A が後者関数に関して閉じているとき、つまり 「aA の元であるならば suc(a) も A の元である」が成り立つときに、 A帰納的集合であるという。 ここで、次のように定義する。

  • N := 0 を含むあらゆる帰納的集合の共通部分
  • suc := 後者関数のNへの制限

この集合 N を自然数全体の集合といい、これは時々(特に順序数に関する文脈で)ギリシャ文字の ω と表記される。

無限集合の公理は 0 を含む帰納的集合の存在を主張しているので、ここでの N の定義に問題はない。 自然数のシステム (N, 0, suc) はペアノの公理を満たすことが示される。 それぞれの自然数は、その数より小さい自然数全てを要素とする数の集合、となる。

等々である。 この構成法はジョン・フォン・ノイマンによる[1]

これは可能なペアノシステムの構成法として唯一のものではない。 例えば、集合 N = {0, 1, 2, ...} の構成と上記の後者関数 suc を仮定して、 X := {5, 6, 7, ...}, x := 5, と f := X 上に限定した後者関数、と定義したならば、これもまたペアノシステムである。

二つのペアノシステム (X, x, f) と (Y, y, g) は次の条件を満たす全単射 φ: XY が(唯一つ)存在するときに同型であるという:

  • φ(x) = y
  • X の任意の元 a に対して φ(f(a)) = g(φ(a))

一階述語論理で定式化されたペアノの公理は、無数の超準モデルを持つ。(レーヴェンハイム=スコーレムの定理二階述語論理によって定式化することで、ペアノシステムを同型の違いを除いて一意に定めることができる[2]

ラムダ計算はペアノの公理を満たす自然数の、異なる構成法を与える。


ペアノ自身による記述

ペアノは 1889年に「Arithmetices Principia, nova methodo exposita(算術原理)」と題するラテン語で書かれた論文で自然数の公理の原型となるべきものを発表している[3][4]が、それらは自然数以外の公理を含み本来必要とされるよりも多くの命題が述べられているなど、自然数の公理系としては不十分なものであった。1889 年の記載は以下の通り。原論文には誤植があるが正しい形に修正。本論文では、この後、四則演算の定義などが続き、ここでは明示的に自然数を定義しようとしている。

  1. 1 は自然数
  2. a が自然数なら a = a
  3. a, b が自然数で a = b なら b = a
  4. a, b, c が自然数で a = b, b = c なら a = c
  5. a = bb が自然数なら a は自然数
  6. a が自然数なら a + 1 は自然数
  7. a, b が自然数で a = b なら a + 1 = b + 1
  8. a が自然数なら、a + 1 と 1 は等しくない
  9. もし集合 K が、1 を含み かつ 自然数 xK に含まれるなら x + 1 が K に含まれる、という条件を満たすなら K は全ての自然数を含む

現在ペアノの公理系として知られる形のものが発表されたのは 1891年の「数の概念について」である。 この論文の中でペアノは次の 5 項目を自然数の満たすべき原始命題として与え、さらにこれら 5 つの命題が互いに独立であることを証明した。ペアノは現代の用語で言うところの公理推論規則を合わせて原始命題と呼んだ。ここで挙げているものは公理にあたる。

  1. 1 は自然数である
  2. 任意の自然数 a に対して、a+ が自然数を与えるような右作用演算 + が存在する
  3. もし a, b を自然数とすると、 a+ = b+ ならば a = b である
  4. a+ = 1 を満たすような自然数 a は存在しない
  5. 集合s が二条件「(i) 1 は s に含まれる, (ii) 自然数 as に含まれるならば a+s に含まれる」を満たすならば、あらゆる自然数は s に含まれる。

ペアノがこれらの原始命題によって自然数そのものを定義しようとはしなかった点には注意を払う必要がある。 彼は自然数の持つべき性質を挙げ、自然数 や 1 などの原始命題中に現れる用語を無定義述語として扱っている。 これは後にヒルベルトらによって強力に進められることになる、形式主義的方法の格好の例といえる。

脚注

参考文献

  • 足立恒雄『数 体系と歴史』朝倉書店、2002年1月。ISBN 4-254-11088-X 
  • 足立恒雄『数とは何か そしてまた何であったか』共立出版、2011年6月。ISBN 978-4-320-01971-3 
  • 足立恒雄『フレーゲ・デデキント・ペアノを読む 現代における自然数論の成立』日本評論社、2013年4月8日。ISBN 978-4-535-78697-4  - フレーゲデデキントペアノの著作の解説。文献・索引あり。
  • 足立恒雄『数の発明』岩波書店〈岩波科学ライブラリー 219〉、2013年12月20日。ISBN 978-4-00-029619-9 
  • 田畑博敏「第二階論理によるペアノ算術」(PDF)『鳥取大学教育地域科学部紀要. 地域研究』第4巻第1号、鳥取大学教育地域科学部、2002年、37-84頁。 
  • Dedekind, Richard (1963-06-01) [1901], Essays on the Theory of Numbers, Dover Books on Mathematics (Paparback ed.), Dover Publications, ISBN 978-0-486-21010-0 
    • デーデキント 著、河野伊三郎 訳『数について――連続性と数の本質――』岩波書店〈岩波文庫 青924-1〉、1961年11月16日。ISBN 978-4-00-339241-6 
    • リヒャルト・デデキント『数とは何かそして何であるべきか』渕野昌 訳・解説、筑摩書房〈ちくま学芸文庫 テ9-1 Math & Science〉、2013年7月10日。ISBN 978-4-480-09547-3  - 「数とは何かそして何であるべきか?」・「連続性と無理数」を収録。
  • ジュゼッペ・ペアノ『数の概念について』小野勝次・梅沢敏郎 訳・解説、共立出版〈現代数学の系譜 2〉、1969年8月30日。ISBN 978-4-320-01155-7 
  • van Heijenoort, Jean, ed. (1967), From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931, Cambridge, Mass: Harvard University Press, ISBN 978-0-674-32449-7 

関連項目

外部リンク