大域次元
環論とホモロジー代数において、環 A の左(右)大局次元あるいは大域次元(英: global dimension)(または大局ホモロジー次元(英: global homological dimension)、ときには単にホモロジー次元(英: homological dimension)と呼ばれる)は、すべての左(右) A-加群の射影次元の集合の上限として定義される環のホモロジー的不変量である。それは非負の整数か無限大に値をとり l. gl. dim A (r. gl. dim A )と書かれる。さらに両者が一致するときには単に大局次元と言い gl. dim A と書かれる。
一般の非可換環 A に対しては左と右の大局次元は異なるかもしれない[1]。しかしながら、A が左かつ右ネーター環であれば、これらの大局次元は両方とも、定義が左右対称的な弱大局次元に等しいことがわかる[2]。したがって、左かつ右ネーター環に対しては、両者は一致し、大局次元について話すことが正当化される。
大局次元は可換ネーター環の次元論で重要な技術的概念である。
例
A = k[x1, ..., xn] を体 k 上の n 変数多項式環とする。このとき A の大局次元は n と等しい[3]。このステートメントはダフィット・ヒルベルトによる多項式環のホモロジー的性質の基礎的な研究にさかのぼる。ヒルベルトのsyzygy定理を参照。より一般的に、R が有限の大局次元 d のネーター環で A = R[x] が R 上一変数の多項式環であれば、A の大局次元は d + 1 に等しい。
自然数 n が平方因子を持たないときには環 Z/nZ の大局次元は無限大である[4]。
体 k の標数が有限群 G の位数を割り切るとき群環 kG の左大局次元は無限大である[4]。
1次のワイル代数 A1 は大局次元 1 の非可換ネーター整域である。
大局次元の特徴づけ
環 A の右大局次元は次の数と等しい[5]。
- すべての巡回右 A-加群の射影次元の集合の上限
- すべての右 A-加群の射影次元の集合の上限
- すべての右 A-加群の移入次元の集合の上限
- sup{ d≥0 : Extd(M, N) ≠ 0 for some M, N ∈ Mod A }
A の左大局次元は上記リストの「右」を「左」にとりかえることによって得られる同様の特徴づけをもつ。
大局次元による特徴づけ
環の左または右大局次元が 0 であることと半単純であることは同値である[6]。
環 A の左(右)大局次元が1以下であることと A が左(右)遺伝環であることは同値である[7]。とくに、体でない可換単項イデアル整域は大局次元 1 をもつ。
ジャン=ピエール・セールは次のことを証明した。可換ネーター局所環 A が正則であるのは大局次元が有限のとき、かつそのときに限る[8]。さらにこのとき、大局次元は A のクルル次元と一致する。この定理によってホモロジー的手法を可換代数に応用する扉が開かれた。
脚注
- ^ Rotman 2009, p. 459.
- ^ Weibel 1994, Exercise 4.1.1.
- ^ Weibel 1994, Corollary 4.3.8 (Hilbert's theorem on syzygies).
- ^ a b Rotman 2009, Exercise 8.2
- ^ Weibel 1994, Theorem 4.1.2.
- ^ Weibel 1994, Theorem 4.2.2.
- ^ Weibel 1994, Theorem 4.2.11.
- ^ Matsumura 1989, Theorem 19.2 (Serre).
参考文献
- Matsumura, Hideyuki (1989), Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, ISBN 0-521-36764-6, Zbl 00043569
- Rotman, Joseph J. (2009). An Introduction to Homological Algebra. Universitext (Second ed.). Springer. ISBN 978-0-387-24527-0. Zbl 1157.18001
- Weibel, Charles A. (1994). An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics. 38. Cambridge University Press. ISBN 0-521-43500-5. Zbl 0797.18001
- 岩永, 恭雄、佐藤, 眞久『環と加群のホモロジー代数的理論』(第1版)日本評論社、2002年。ISBN 978-4-535-78367-6 。
- 松村, 英之『可換環論』(復刊)共立出版株式会社、2000年。ISBN 4-320-01658-0。
- Lam, Tsit-Yuen (1999). Lectures on Modules and Rings. Graduate Texts in Mathematics. 189. New York: Springer-Verlag. ISBN 978-1-4612-0525-8