ファイル:Harddrive-engineerguy.ogv

ページのコンテンツが他言語でサポートされていません。

Harddrive-engineerguy.ogv(Ogg 多重音声/動画ファイル、Theora/Vorbis、長さ 5分 4秒、534 × 300 ピクセル、全体で 610kbps、ファイルサイズ: 22.11メガバイト)

概要

解説

Hard drive teardown. Bill tears down a hard drive to show how it stores data. He explains how smooth the disk surface must be for the device to work, and he outlines the mathematical technique used to increase data storage.

Transcript

A home computer is a powerful tool, but it must store data reliably to work well, otherwise its kind of pointless isn't it? Let's look inside and see how it stores data.

Look at that: It's marvelous! It's an ordinary hard drive, but its details, of course, are extraordinary. Now, I'm sure you know the essence of a hard drive: We store data on it in binary form - ones and zeros.

Now, this arm supports a "head" - which is an electro-magnet that scans over the disk and either writes data by changing the magnetization of specific sections on the platter or it just reads the data by measuring the magnetic polarization.

Now, in principle, pretty simple, but in practice a lot of hard core engineering. The key focus lies in being sure that the head can precisely - error free - read and write to the disk.

The first order of business is to move it with great control. To position the arm engineers use a "voice coil actuator". The base of the arm sits between two powerful magnets. They're so strong they're actually kind of hard to pull apart. There.

The arm moves because of a Lorentz force. Pass a current through a wire that's in a magnetic field and the wire experiences a force; reverse the current and the force also reverses. As current flows in one direction in the coil the force created by the permanent magnet makes the arm move this way, reverse the current and it moves back. The force on the arm is directly proportional to the current through the coil which allows the arm's position to be finely tuned. Unlike a mechanical system of linkages there is minimal wear and it isn't sensitive to temperature.

At the end of the arm lies the most critical component: The head. At its simplest it's a piece of ferromagnetic material wrapped with wire. As it passes over the magnetized sections of the platter it measures changes in the direction of the magnetic poles. Recall Faraday's Law: A change in magnetization produces a voltage in a nearby coil. So, as the head passes a section where the polarity has changed it records a voltage spike. The spikes - both negative and positive - represent a "one" and where there is no voltage spike corresponds to a "zero."

The head gets astonshingly close to the disk surface - 100 nanometers in older drives, but today under ten nanometers in the newest ones. As the head gets closer to the disk its magnetic field covers less area allowing for more sectors of information to be packed onto the disk's surface.

To keep that critical height engineers use an ingenious method: They "float" the head over the disk. You see, as the disk spins it forms a boundary layer of air that gets dragged past the stationary head at 80 miles per hour at the outer edge. The head rides on a "slider" aerodynamically designed to float above the platter. The genius of this air-bearing technology is its self-induced adjustment: If any disturbance causes the slider to rise too high it "floats" back to the where it should be.

Now, because the head is so close to the disk surface any stray particles could damage the disk resulting in data loss. So, engineers place this recirculating filter in the air flow; it removes small particles scraped off the platter.

To keep the head flying at the right height the platter is made incredibly smooth: Typically this platter is so smooth that it has a surface roughness of about one nanometer.

To give you an idea of how smooth that is let's imagine that this section is enlarged until it's as long as a football field - American or International - the average "bump" on the surface would be about three hundredths of an inch.

The key element of the platter is the magnetic layer, which is cobalt - with perhaps platinum and nickel mixed in. Now this mixture of metals has high coercivity, which means that it will maintain that magnetization - and thus data - until it is exposed to another powerful magnetic field.

One last thing that I find enormously clever: Using a bit of math to squeeze up to forty percent more information on the disk.

Consider this sequence of magnetic poles on the disk's surface - 0-1-0-1-1-1. A scan by the head would reveal these distinct voltage spikes - both positive or negative for the "ones." We would be easily able to distinguish it from, say, this similar sequence. If we compare them they clearly differ. Engineers, though, always work to get more and more data onto a hard drive. One way to do this is to shrink the magnetic domains, but look what happens to the voltage spikes when we do this. For each sequence the spikes of the ones now overlap and superimpose giving "fuzzy" signals. In fact, the two sequences now look very similar. Using a technique called Partial Response Maximum Likelihood engineers have developed sophisticated codes that can take a murky signal like this, generate the possible sequences that could make it up and then choose the most probable.

As with any successful technology, these hard drives remain unnoticed in our daily lives, unless something goes wrong! I'm Bill Hammack, the engineer guy.

日付 2011年と2012年の間
date QS:P,+2011-00-00T00:00:00Z/8,P1319,+2011-00-00T00:00:00Z/9,P1326,+2012-00-00T00:00:00Z/9
原典 http://www.engineerguy.com/videos.htm
作者 Bill Hammack
Timed Text
このメディアファイルは字幕が利用できます。

メディアプレーヤーのツールバーにある CC ボタンをクリックすると、字幕の表示・非表示を切り替えられます。 以下のフォームを利用して新たな言語の字幕を作成できます。
字幕の一覧
  ja の部分を希望の言語コードに変更して 表示 ボタンを押してください。
   
他言語

asturianu  català  čeština  Deutsch  English  español  Esperanto  euskara  français  Frysk  galego  hrvatski  Bahasa Indonesia  italiano  Mirandés  Nederlands  Orunyoro  polski  português  português do Brasil  sicilianu  slovenščina  svenska  Türkçe  Tiếng Việt  български  македонски  русский  українська  हिन्दी  বাংলা  ไทย  Orutooro  한국어  日本語  中文  中文(中国大陆)  中文(台灣)  中文(新加坡)  中文(简体)  中文(繁體)  中文(香港)  עברית  العربية  فارسی  +/−

ライセンス

w:ja:クリエイティブ・コモンズ
表示 継承
このファイルはクリエイティブ・コモンズ 表示-継承 3.0 非移植ライセンスのもとに利用を許諾されています。
帰属: William S. Hammack
あなたは以下の条件に従う場合に限り、自由に
  • 共有 – 本作品を複製、頒布、展示、実演できます。
  • 再構成 – 二次的著作物を作成できます。
あなたの従うべき条件は以下の通りです。
  • 表示 – あなたは適切なクレジットを表示し、ライセンスへのリンクを提供し、変更があったらその旨を示さなければなりません。これらは合理的であればどのような方法で行っても構いませんが、許諾者があなたやあなたの利用行為を支持していると示唆するような方法は除きます。
  • 継承 – もしあなたがこの作品をリミックスしたり、改変したり、加工した場合には、あなたはあなたの貢献部分を元の作品とこれと同一または互換性があるライセンスの下に頒布しなければなりません。
w:ja:クリエイティブ・コモンズ
表示 継承
このファイルはクリエイティブ・コモンズ 表示-継承 3.0 非移植ライセンスのもとに利用を許諾されています。
帰属: Bill Hammack
あなたは以下の条件に従う場合に限り、自由に
  • 共有 – 本作品を複製、頒布、展示、実演できます。
  • 再構成 – 二次的著作物を作成できます。
あなたの従うべき条件は以下の通りです。
  • 表示 – あなたは適切なクレジットを表示し、ライセンスへのリンクを提供し、変更があったらその旨を示さなければなりません。これらは合理的であればどのような方法で行っても構いませんが、許諾者があなたやあなたの利用行為を支持していると示唆するような方法は除きます。
  • 継承 – もしあなたがこの作品をリミックスしたり、改変したり、加工した場合には、あなたはあなたの貢献部分を元の作品とこれと同一または互換性があるライセンスの下に頒布しなければなりません。

評価

今日のメディア このファイルは、2012年6月15日の今日のメディアに選ばれました。その際の説明文は以下の通りでした。
English: A basic overview of how how a hard disk drive functions.
Other languages
English: A basic overview of how how a hard disk drive functions.
Македонски: Преглед на работата на еден тврд диск.
中文(简体):介绍硬盘如何工作

キャプション

このファイルの内容を1行で記述してください

このファイルに描写されている項目

題材

ファイルの履歴

過去の版のファイルを表示するには、その版の日時をクリックしてください。

日付と時刻サムネイル寸法利用者コメント
現在の版2012年6月13日 (水) 12:165分 4秒、 534 × 300 (22.11メガバイト)Smallman12q

以下のページがこのファイルを使用しています:

グローバルなファイル使用状況

以下に挙げる他のウィキがこの画像を使っています:

メタデータ