「指数 (初等整数論)」の版間の差分

出典: フリー百科事典『ウィキペディア(Wikipedia)』
削除された内容 追加された内容
Takatota (会話 | 投稿記録)
m編集の要約なし
原始根の存在するnについて
6行目: 6行目:
&phi;(''n'') を ''n'' の[[オイラーのφ関数|オイラー数]]とするとき、ord<sub>''n''</sub>(''g'') = &phi;(''n'') となる整数 ''g'' が存在するならば、''g'' の属する法 ''n'' の剰余類 ''g'' mod ''n'' を ''n'' を法とする'''原始根'''(げんしこん、''primitive root'' modulo ''n'')と呼ぶ。すなわち ''n'' を法とする原始根とは、''n'' を法とする既約剰余類全体が乗法に関して成す[[群論|群]] ('''Z''' / ''n'' '''Z''')<sup>&times;</sup> が[[巡回群]]であるときの、その生成元のことである。
&phi;(''n'') を ''n'' の[[オイラーのφ関数|オイラー数]]とするとき、ord<sub>''n''</sub>(''g'') = &phi;(''n'') となる整数 ''g'' が存在するならば、''g'' の属する法 ''n'' の剰余類 ''g'' mod ''n'' を ''n'' を法とする'''原始根'''(げんしこん、''primitive root'' modulo ''n'')と呼ぶ。すなわち ''n'' を法とする原始根とは、''n'' を法とする既約剰余類全体が乗法に関して成す[[群論|群]] ('''Z''' / ''n'' '''Z''')<sup>&times;</sup> が[[巡回群]]であるときの、その生成元のことである。


原始根が存在するのは ''n'' が 2, 4, ''p''<sup>''k''</sup>,2 ''p''<sup>''k''</sup>
このような状況が発生する ''n'' は形が限られるが、例えば ''n'' が素数である場合などは原始根は存在する。
(''p'' は奇素数 ''k''は自然数) の場合に限られる。


''g'' mod ''n'' が法 ''n'' に関する原始根であるならば、原始根の定義により任意の''a'' mod ''n'' &isin; ('''Z''' / ''n'' '''Z''')<sup>&times;</sup> に対して
''g'' mod ''n'' が法 ''n'' に関する原始根であるならば、原始根の定義により任意の''a'' mod ''n'' &isin; ('''Z''' / ''n'' '''Z''')<sup>&times;</sup> に対して

2007年5月30日 (水) 22:04時点における版

初等整数論における指数(しすう、index)は、解析学における指数関数対数関数の概念の類似物である。標数と呼ばれることもある。

定義

互いに素な正の整数 n と整数 a に対して ak ≡ 1 (mod n) なる合同式が成り立つような最小の非負整数 k を、n を法とする a位数(いすう、multiplicative order of a modulo n)と呼び、 ordn (a) や On(a) などと記す。

φ(n) を nオイラー数とするとき、ordn(g) = φ(n) となる整数 g が存在するならば、g の属する法 n の剰余類 g mod nn を法とする原始根(げんしこん、primitive root modulo n)と呼ぶ。すなわち n を法とする原始根とは、n を法とする既約剰余類全体が乗法に関して成す (Z / n Z)×巡回群であるときの、その生成元のことである。

原始根が存在するのは n が 2, 4, pk,2 pk (p は奇素数 kは自然数) の場合に限られる。

g mod n が法 n に関する原始根であるならば、原始根の定義により任意のa mod n ∈ (Z / n Z)× に対して

なる整数 e が φ(n) を法として唯一つ定まる。このときこの e mod φ(n) を、原始根 g mod n(てい、base)とする a mod n指数とよび、Indg(a) と記す。

紛れのおそれが無いならば、これらの定義に現れる剰余類(に関する記述)をその代表元となる整数(に関する記述)であるかのように記す。

性質

以下、g を整数 n を法とする原始根として任意に選んで固定しておく。また、abn とは互いに素であるとする。

  • 定義:
  • ab (mod n) であることと Indg(a) ≡ Indg(b) (mod φ(n)) であることとは同値である。
  • Indg(1) ≡ 0 (mod n)
  • Indg(g) ≡ 1 (mod n)
  • Indg(ab) ≡ Indg(a) + Indg(b) (mod φ(n))
  • Indg(ak) ≡ k * Indg(a) (mod φ(n))