CD38

出典: フリー百科事典『ウィキペディア(Wikipedia)』
CD38
PDBに登録されている構造
PDBオルソログ検索: RCSB PDBe PDBj
PDBのIDコード一覧

4TMF, 1YH3, 1ZVM, 2EF1, 2HCT, 2I65, 2I66, 2I67, 2O3Q, 2O3R, 2O3S, 2O3T, 2O3U, 2PGJ, 2PGL, 3DZF, 3DZG, 3DZH, 3DZI, 3DZJ, 3DZK, 3F6Y, 3I9M, 3I9N, 3OFS, 3RAJ, 3ROK, 3ROM, 3ROP, 3ROQ, 3U4H, 3U4I, 4CMH, 4F45, 4F46, 4OGW, 4XJS, 4XJT, 5F1K, 5F1O, 5F21

識別子
記号CD38, ADPRC1, ADPRC 1, CD38 molecule
外部IDOMIM: 107270 MGI: 107474 HomoloGene: 1345 GeneCards: CD38
EC番号2.4.99.20
遺伝子の位置 (ヒト)
4番染色体 (ヒト)
染色体4番染色体 (ヒト)[1]
4番染色体 (ヒト)
CD38遺伝子の位置
CD38遺伝子の位置
バンドデータ無し開始点15,778,275 bp[1]
終点15,853,232 bp[1]
遺伝子の位置 (マウス)
5番染色体 (マウス)
染色体5番染色体 (マウス)[2]
5番染色体 (マウス)
CD38遺伝子の位置
CD38遺伝子の位置
バンドデータ無し開始点44,025,895 bp[2]
終点44,069,717 bp[2]
RNA発現パターン
さらなる参照発現データ
遺伝子オントロジー
分子機能 トランスフェラーゼ活性
hydrolase activity, acting on glycosyl bonds
NAD(P)+ nucleosidase activity
加水分解酵素活性
NAD+ nucleotidase, cyclic ADP-ribose generating
NAD+ nucleosidase activity
phosphorus-oxygen lyase activity
identical protein binding
細胞の構成要素 integral component of membrane

intracellular membrane-bounded organelle
cell surface
エキソソーム
細胞核
細胞膜
basolateral plasma membrane
secretory granule membrane
生物学的プロセス B cell receptor signaling pathway
response to cytokine
エストラジオールへの反応
response to interleukin-1
低酸素症への反応
response to retinoic acid
positive regulation of cytosolic calcium ion concentration
response to progesterone
female pregnancy
negative regulation of apoptotic process
ヒドロペルオキシドへの反応
positive regulation of transcription, DNA-templated
positive regulation of cell growth
positive regulation of B cell proliferation
positive regulation of vasoconstriction
長期抑圧
apoptotic signaling pathway
ホルモンへの反応
negative regulation of transcription, DNA-templated
シグナル伝達
positive regulation of insulin secretion
negative regulation of bone resorption
NAD metabolic process
positive regulation of cell population proliferation
negative regulation of neuron projection development
artery smooth muscle contraction
出典:Amigo / QuickGO
オルソログ
ヒトマウス
Entrez
Ensembl
UniProt
RefSeq
(mRNA)

NM_001775

NM_007646

RefSeq
(タンパク質)

NP_001766

NP_031672

場所
(UCSC)
Chr 4: 15.78 – 15.85 MbChr 4: 44.03 – 44.07 Mb
PubMed検索[3][4]
ウィキデータ
閲覧/編集 ヒト閲覧/編集 マウス

CD38(cluster of differentiation 38)は、CD4細胞CD8細胞B細胞NK細胞など多くの免疫細胞(白血球)の表面に存在する糖タンパク質である[5]。cyclic ADP-ribose hydrolase 1としても知られる。細胞接着シグナル伝達カルシウムシグナリングにも機能する[6]

ヒトでは、CD38は4番染色体英語版に位置するCD38遺伝子にコードされている[7][8]。CD38はCD157英語版パラログであり、その遺伝子もまた4番染色体(4p15)に位置している[9]

歴史[編集]

CD38は1980年にT細胞の表面マーカー(CD抗原)として初めて同定された[10][11]。1992年、CD38はB細胞、単球、Nk細胞の表面マーカーとしても記載された[10]。また同時期に、CD38は単に細胞種のマーカーであるわけではなく、B細胞とT細胞の活性化因子であることが発見された[10]。1992年にはCD38の酵素活性も発見され、カルシウムの放出を誘導するセカンドメッセンジャーである環状アデノシン二リン酸リボース(cADPR)やニコチン酸アデニンジヌクオチドリン酸英語版(NAADP)の合成能を有することが示された[10]

組織分布[編集]

CD38は形質細胞に最も高頻度でみられ、NK細胞、B細胞とT細胞、そしてその他のさまざまな細胞種の順に続く[12]

機能[編集]

CD38は受容体もしくは酵素として機能する[13]。受容体としては、CD38はT細胞表面のCD31英語版に結合し、これらの細胞を活性化してさまざまなサイトカインの産生をもたらす[13]。CD38の活性化はTRPM2英語版チャネルと協働し、細胞体積の調節などの生理的応答を開始する[14]

CD38は多機能酵素であり、NADからADPリボース(97%)とcADPR(3%)への合成を触媒する[15][16]。CD38はNAD濃度の主要な調節因子であると考えられている。そのNAD分解活性はADPリボシルシクラーゼとしての機能よりもはるかに高く、100分子のNADのADPリボースへの変換につき1分子のcADPRが生成される[15][17]ニコチン酸が酸性条件下で存在する場合には、CD38はNADP+をNAADPへ加水分解する[15][18]

これらの反応産物は、細胞内のCa2+濃度の調節に必要不可欠である[19]。CD38は細胞表面の細胞外酵素として存在するだけでなく、細胞膜内面で細胞質基質に向かって同様の酵素機能を果たす[20]

CD38は、cADPRの産生によって、脳内での神経伝達物質の放出を制御している、もしくは影響を及ぼしていると考えられている[21]。脳内のCD38は親密さをもたらす神経ペプチド英語版であるオキシトシンの放出を可能にする[22]

CD38と同様に、CD157もADPリボシルシクラーゼファミリーのメンバーであり、NADからcADPRの形成を触媒する。ただし、CD157の触媒活性はCD38よりもかなり弱いものである[23]SARM1英語版もNADからcADPRの形成を触媒する酵素であり[20]、CD38よりもはるかに効率的にcADPR濃度を上昇させる[24]

臨床的意義[編集]

CD38の機能喪失は、免疫応答不全、代謝異常、そしておそらく自閉症と関係した社会性記憶障害などの行動変容と関係している[19][25]

内皮細胞上のCD31はNK細胞上のCD38に結合し、これらの細胞を内皮に接着させる[26][27]。また、白血球上のCD38は内皮細胞上のCD16英語版に結合し、白血球の血管壁への結合、そして血管壁の通過を可能にする[9]

サイトカインIFN-γグラム陰性菌細胞壁の構成要素であるリポ多糖は、CD38のマクロファージ上での発現を誘導する[27]。IFN-γは単球上でのCD38の発現も強力に誘導する[19]TNFは気道の平滑筋細胞上にCD38を誘導し、cADPRを介してカルシウムシグナルを誘導することで異常な収縮を高めて気管支喘息を引き起こす[28]

CD38は細胞の活性化のマーカーであり、HIVの感染、白血病、骨髄腫[29]、固形腫瘍、2型糖尿病、骨代謝の異常、そして一部の遺伝疾患と関係している。

CD38は気道収縮の過敏性反応を高める。CD38は気管支喘息患者の肺で増加しており、気道平滑筋の炎症応答を増幅している[16]

CD38発現の上昇は慢性リンパ性白血病の予後不良のマーカーであり、疾患の進行の加速と関係している[30]

CD38はインフルエンザ感染時に形質細胞様樹状細胞英語版(pDC)でアップレギュレーションされていることがin vivoで示されており、CD38を遮断することでpDCによるI型インターフェロンの産生が妨げられることin vitroで示されている[31]

臨床応用[編集]

CD38阻害剤は、気管支喘息の治療薬となる可能性がある[32]

CD38は白血病の予後マーカーとして利用されている[33]

ダラツムマブはCD38を標的とする薬剤であり、多発性骨髄腫の治療に利用されている[34][35]

CD38は赤血球の表面でも弱く発現しており、ダラツムマブは輸血前検査に干渉する場合がある。赤血球抗原に対する不規則抗体のスクリーニングアッセイや直接抗グロブリン試験では、ダラツムマブの使用によって偽陽性の結果が出る場合がある[36]。赤血球をジチオスレイトール(DTT)による前処理を行うか、DaraExなどの抗CD38抗体中和試薬を用いることで防ぐことができる。

阻害剤[編集]

老化研究[編集]

CD38の増加は、加齢に伴うNADの減少との関係が示唆されている[51][52]。CD38特異的阻害剤であるCD38-IN-78cで処理した老齢マウスでは、加齢に伴うNADの減少が防止された[53]。CD38ノックアウトマウスではNAD濃度は2倍となり、また加齢に伴うNADの減少に対する抵抗性を示し[54]、主要器官(肝臓、筋肉、脳、心臓)でNAD濃度が劇的に上昇する[55]。一方、CD38過剰発現マウスでは、NADの減少とミトコンドリア機能不全がみられる[54]

加齢に伴うCD38発現の上昇とNADの減少は、主にマクロファージによるものであると考えられている[56]。マクロファージの細胞老化はCD38の発現を高める[56]内臓脂肪やその他の組織に対する加齢に伴うマクロファージの蓄積は、慢性炎症の原因となる[57]。炎症性転写因子であるNF-κBとCD38は相互に活性化しあう[56]。老化細胞からの分泌物はマクロファージでのCD38の高レベルでの発現を誘導し、加齢に伴うNADの減少の主要な原因となる[58]

脳におけるNADの減少はアストロサイトミクログリアでのCD38の増加が原因である可能性があり、神経炎症神経変性につながっている可能性がある[21]

出典[編集]

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000004468 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000029084 - Ensembl, May 2017
  3. ^ Human PubMed Reference:
  4. ^ Mouse PubMed Reference:
  5. ^ Orciani M, Trubiani O, Guarnieri S, Ferrero E, Di Primio R (October 2008). “CD38 is constitutively expressed in the nucleus of human hematopoietic cells”. Journal of Cellular Biochemistry 105 (3): 905–12. doi:10.1002/jcb.21887. PMID 18759251. 
  6. ^ Entrez Gene: CD38 CD38 molecule”. 2023年4月30日閲覧。
  7. ^ Jackson DG, Bell JI (April 1990). “Isolation of a cDNA encoding the human CD38 (T10) molecule, a cell surface glycoprotein with an unusual discontinuous pattern of expression during lymphocyte differentiation”. Journal of Immunology 144 (7): 2811–5. PMID 2319135. http://www.jimmunol.org/cgi/pmidlookup?view=long&pmid=2319135. 
  8. ^ Nata K, Takamura T, Karasawa T, Kumagai T, Hashioka W, Tohgo A, Yonekura H, Takasawa S, Nakamura S, Okamoto H (February 1997). “Human gene encoding CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase): organization, nucleotide sequence and alternative splicing”. Gene 186 (2): 285–92. doi:10.1016/S0378-1119(96)00723-8. PMID 9074508. 
  9. ^ a b Quarona V, Zaccarello G, Chillemi A (2013). “CD38 and CD157: a long journey from activation markers to multifunctional molecules”. Cytometry Part B 84 (4): 207–217. doi:10.1002/cyto.b.21092. PMID 23576305. 
  10. ^ a b c d Lee, H.C., ed (2002). A Natural History of the Human CD38 Gene. In:Cyclic ADP-Ribose and NAADP. Springer Publishing. doi:10.1007/978-1-4615-0269-2_4. ISBN 978-1-4613-4996-9 
  11. ^ Reinherz EL, Kung PC, Schlossman SF (1980). “Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage”. Proceedings of the National Academy of Sciences of the United States of America 77 (3): 1588–1592. Bibcode1980PNAS...77.1588R. doi:10.1073/pnas.77.3.1588. PMC 348542. PMID 6966400. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC348542/. 
  12. ^ van de Donk N, Richardson PG, Malavasi F (2018). “CD38 antibodies in multiple myeloma: back to the future”. Blood 131 (1): 13–29. doi:10.1182/blood-2017-06-740944. PMID 29118010. 
  13. ^ a b Nooka AK, Kaufman JL, Hofmeister CC, Joseph NS (2019). “Daratumumab in multiple myeloma”. Cancer 125 (14): 2364–2382. doi:10.1002/cncr.32065. PMID 30951198. 
  14. ^ Numata T, Sato K, Christmann J, Marx R, Mori Y, Okada Y, Wehner F (2012). “The ΔC splice-variant of TRPM2 is the hypertonicity-induced cation channel in HeLa cells, and the ecto-enzyme CD38 mediates its activation”. J. Physiol. 590 (5): 1121–1138. doi:10.1113/jphysiol.2011.220947. PMC 3381820. PMID 22219339. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3381820/. 
  15. ^ a b c Kar A, Mehrotra S, Chatterjee S (2020). “CD38: T Cell Immuno-Metabolic Modulator”. Cells 9 (7): 1716. doi:10.3390/cells9071716. PMC 7408359. PMID 32709019. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408359/. 
  16. ^ a b Guedes A, Dileepan M, Jude JA, Kannan MS (2020). “Role of CD38/cADPR signaling in obstructive pulmonary diseases”. Current Opinion in Pharmacology 51: 29–33. doi:10.1016/j.coph.2020.04.007. PMC 7529733. PMID 32480246. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7529733/. 
  17. ^ Braidy N, Berg J, Clement J, Sachdev P (2019). “Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic Targets for Age-Related Degenerative Diseases: Rationale, Biochemistry, Pharmacokinetics, and Outcomes”. Antioxidants & Redox Signaling 10 (2): 251–294. doi:10.1089/ars.2017.7269. PMC 6277084. PMID 29634344. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6277084/. 
  18. ^ Chini EN, Chini CC, Kato I, Takasawa S, Okamoto H (February 2002). “CD38 is the major enzyme responsible for synthesis of nicotinic acid-adenine dinucleotide phosphate in mammalian tissues”. The Biochemical Journal 362 (Pt 1): 125–30. doi:10.1042/0264-6021:3620125. PMC 1222368. PMID 11829748. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1222368/. 
  19. ^ a b c Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, Vaisitti T, Aydin S (July 2008). “Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology”. Physiological Reviews 88 (3): 841–86. doi:10.1152/physrev.00035.2007. PMID 18626062. 
  20. ^ a b Lee HC, Zhao YJ (2019). “Resolving the topological enigma in Ca 2+ signaling by cyclic ADP-ribose and NAADP”. Journal of Biological Chemistry 294 (52): 19831–19843. doi:10.1074/jbc.REV119.009635. PMC 6937575. PMID 31672920. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6937575/. 
  21. ^ a b Guerreiro S, Privat A, Bressac L, Toulorge D (2020). “CD38 in Neurodegeneration and Neuroinflammation”. Cells 9 (2): 471. doi:10.3390/cells9020471. PMC 7072759. PMID 32085567. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072759/. 
  22. ^ Tolomeo S, Chiao B, Lei Z, Chew SH, Ebstein RP (2020). “A Novel Role of CD38 and Oxytocin as Tandem Molecular Moderators of Human Social Behavior”. Neuroscience & Biobehavioral Reviews 115: 251–272. doi:10.1016/j.neubiorev.2020.04.013. PMID 32360414. https://discovery.dundee.ac.uk/en/publications/7b019211-b792-409d-aed3-c54512271345. 
  23. ^ Higashida H, Hashii M, Tanaka Y, Matsukawa S (2019). “CD38, CD157, and RAGE as Molecular Determinants for Social Behavior”. Cells 9 (1): 62. doi:10.3390/cells9010062. PMC 7016687. PMID 31881755. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7016687/. 
  24. ^ Zhao ZY, Xie XJ, Li WH, Zhao YJ (2016). “A Cell-Permeant Mimetic of NMN Activates SARM1 to Produce Cyclic ADP-Ribose and Induce Non-apoptotic Cell Death”. iScience 15: 452–466. doi:10.1016/j.isci.2019.05.001. PMC 6531917. PMID 31128467. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6531917/. 
  25. ^ Haruhiro Higashida; Shigeru Yokoyama; Jian-Jun Huang; Li Liu; Wen-Jie Ma; Shirin Akther; Chiharu Higashida; Mitsuru Kikuchi; Yoshio Minabe; Toshio Munesue (November 2012). “Social memory, amnesia, and autism: brain oxytocin secretion is regulated by NAD+ metabolites and single nucleotide polymorphisms of CD38”. Neurochemistry International 61 (6): 828–38. doi:10.1016/j.neuint.2012.01.030. hdl:2297/32816. PMID 22366648. https://doi.org/10.1016/j.neuint.2012.01.030. 
  26. ^ Zambello R, Barilà G, Sabrina Manni S (2020). “NK cells and CD38: Implication for (Immuno)Therapy in Plasma Cell Dyscrasias”. Cells 9 (3): 768. doi:10.3390/cells9030768. PMC 7140687. PMID 32245149. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7140687/. 
  27. ^ a b Glaría E, Valledor AF (2020). “Roles of CD38 in the Immune Response to Infection”. Cells 9 (1): 228. doi:10.3390/cells9010228. PMC 7017097. PMID 31963337. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7017097/. 
  28. ^ Deshpande DA, Guedes A, Graeff R, Dogan S (2018). “CD38/cADPR Signaling Pathway in Airway Disease: Regulatory Mechanisms”. Mediators of Inflammation 2018: 8942042. doi:10.1155/2018/8942042. PMC 5821947. PMID 29576747. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821947/. 
  29. ^ Marlein CR, Piddock RE, Mistry JJ, Zaitseva L, Hellmich C, Horton RH, Zhou Z, Auger MJ, Bowles KM, Rushworth SA (January 2019). “CD38-driven mitochondrial trafficking promotes bioenergetic plasticity in multiple myeloma”. Cancer Research 79 (9): 2285–2297. doi:10.1158/0008-5472.CAN-18-0773. PMID 30622116. 
  30. ^ Burgler S (2015). “Role of CD38 Expression in Diagnosis and Pathogenesis of Chronic Lymphocytic Leukemia and Its Potential as Therapeutic Target”. Critical Reviews in Immunology 35 (5): 417–32. doi:10.1615/CritRevImmunol.v35.i5.50. PMID 26853852. 
  31. ^ Rahil Z, Leylek R, Schürch CM, Chen H, Bjornson-Hooper Z, Christensen SR, Gherardini PF, Bhate SS, Spitzer MH, Fragiadakis GK, Mukherjee N, Kim N, Jiang S, Yo J, Gaudilliere B, Affrime M, Bock B, Hensley SE, Idoyaga J, Aghaeepour N, Kim K, Nolan GP, McIlwain DR (November 2020). “Landscape of coordinated immune responses to H1N1 challenge in humans”. The Journal of Clinical Investigation 130 (11): 5800–5816. doi:10.1172/JCI137265. PMC 7598057. PMID 33044226. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7598057/. 
  32. ^ Deshpande DA, Guedes AG, Lund FE, Kannan MS (2017). “CD38 in the pathogenesis of allergic airway disease: Potential therapeutic targets”. Pharmacology & Therapeutics 172: 116–126. doi:10.1016/j.pharmthera.2016.12.002. PMC 5346344. PMID 27939939. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5346344/. 
  33. ^ Deaglio S, Mehta K, Malavasi F (January 2001). “Human CD38: a (r)evolutionary story of enzymes and receptors”. Leukemia Research 25 (1): 1–12. doi:10.1016/S0145-2126(00)00093-X. PMID 11137554. 
  34. ^ McKeage K (February 2016). “Daratumumab: First Global Approval”. Drugs 76 (2): 275–81. doi:10.1007/s40265-015-0536-1. PMID 26729183. 
  35. ^ Xia C, Ribeiro M, Scott S, Lonial S (October 2016). “Daratumumab: monoclonal antibody therapy to treat multiple myeloma”. Drugs of Today 52 (10): 551–560. doi:10.1358/dot.2016.52.10.2543308. PMID 27910963. 
  36. ^ de Vooght KM, Lozano M, Bueno JL, Alarcon A, Romera I, Suzuki K, Zhiburt E, Holbro A, Infanti L, Buser A, Hustinx H, Deneys V, Frelik A, Thiry C, Murphy M, Staves J, Selleng K, Greinacher A, Kutner JM, Bonet Bub C, Castilho L, Kaufman R, Colling ME, Perseghin P, Incontri A, Dassi M, Brilhante D, Macedo A, Cserti-Gazdewich C, Pendergrast JM, Hawes J, Lundgren MN, Storry JR, Jain A, Marwaha N, Sharma RR (May 2018). “Vox Sanguinis International Forum on typing and matching strategies in patients on anti-CD38 monoclonal therapy: summary”. Vox Sanguinis 113 (5): 492–498. doi:10.1111/vox.12653. PMID 29781081. 
  37. ^ Blacher E, Ben Baruch B, Levy A, Geva N, Green KD, Garneau-Tsodikova S, Fridman M, Stein R (March 2015). “Inhibition of glioma progression by a newly discovered CD38 inhibitor”. International Journal of Cancer 136 (6): 1422–33. doi:10.1002/ijc.29095. PMID 25053177. 
  38. ^ Tarragó MG, Chini CC, Kanamori KS, Warner GM, Caride A, de Oliveira GC, Rud M, Samani A, Hein KZ, Huang R, Jurk D, Cho DS, Boslett JJ, Miller JD, Zweier JL, Passos JF, Doles JD, Becherer DJ, Chini EN (May 2018). “+ Decline”. Cell Metabolism 27 (5): 1081–1095.e10. doi:10.1016/j.cmet.2018.03.016. PMC 5935140. PMID 29719225. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5935140/. 
  39. ^ Kellenberger E, Kuhn I, Schuber F, Muller-Steffner H (July 2011). “Flavonoids as inhibitors of human CD38”. Bioorganic & Medicinal Chemistry Letters 21 (13): 3939–42. doi:10.1016/j.bmcl.2011.05.022. PMID 21641214. 
  40. ^ Becherer JD, Boros EE, Carpenter TY, Cowan DJ, Deaton DN, Haffner CD, Jeune MR, Kaldor IW, Poole JC, Preugschat F, Rheault TR, Schulte CA, Shearer BG, Shearer TW, Shewchuk LM, Smalley TL, Stewart EL, Stuart JD, Ulrich JC (September 2015). “Discovery of 4-Amino-8-quinoline Carboxamides as Novel, Submicromolar Inhibitors of NAD-Hydrolyzing Enzyme CD38”. Journal of Medicinal Chemistry 58 (17): 7021–56. doi:10.1021/acs.jmedchem.5b00992. PMID 26267483. 
  41. ^ Deaton DN, Haffner CD, Henke BR, Jeune MR, Shearer BG, Stewart EL, Stuart JD, Ulrich JC (May 2018). “2,4-Diamino-8-quinazoline carboxamides as novel, potent inhibitors of the NAD hydrolyzing enzyme CD38: Exploration of the 2-position structure-activity relationships”. Bioorganic & Medicinal Chemistry 26 (8): 2107–2150. doi:10.1016/j.bmc.2018.03.021. PMID 29576271. 
  42. ^ Sepehri B, Ghavami R (January 2019). “Design of new CD38 inhibitors based on CoMFA modelling and molecular docking analysis of 4‑amino-8-quinoline carboxamides and 2,4-diamino-8-quinazoline carboxamides”. SAR and QSAR in Environmental Research 30 (1): 21–38. doi:10.1080/1062936X.2018.1545695. PMID 30489181. 
  43. ^ Sidiqi MH, Gertz MA (February 2019). “Daratumumab for the treatment of AL amyloidosis”. Leukemia & Lymphoma 60 (2): 295–301. doi:10.1080/10428194.2018.1485914. PMC 6342668. PMID 30033840. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6342668/. 
  44. ^ Sarclisa EPAR”. European Medicines Agency (EMA) (2021年7月29日). 2021年7月29日閲覧。
  45. ^ Raab MS, Engelhardt M, Blank A, Goldschmidt H, Agis H, Blau IW, Einsele H, Ferstl B, Schub N, Röllig C, Weisel K, Winderlich M, Griese J, Härtle S, Weirather J, Jarutat T, Peschel C, Chatterjee M (May 2020). “MOR202, a novel anti-CD38 monoclonal antibody, in patients with relapsed or refractory multiple myeloma: a first-in-human, multicentre, phase 1-2a trial”. The Lancet. Haematology 7 (5): e381–e394. doi:10.1016/S2352-3026(19)30249-2. PMID 32171061. 
  46. ^ Escande C, Nin V, Price NL, Capellini V, Gomes AP, Barbosa MT, O'Neil L, White TA, Sinclair DA, Chini EN (April 2013). “Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome”. Diabetes 62 (4): 1084–1093. doi:10.2337/db12-1139. PMC 3609577. PMID 23172919. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3609577/. 
  47. ^ Boslett J, Hemann C, Zhao YJ, Lee HC, Zweier JL (April 2017). “Luteolinidin Protects the Postischemic Heart through CD38 Inhibition with Preservation of NAD(P)(H)”. The Journal of Pharmacology and Experimental Therapeutics 361 (1): 99–108. doi:10.1124/jpet.116.239459. PMC 5363772. PMID 28108596. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5363772/. 
  48. ^ Lagu B, Wu X, Kulkarni S, Paul R, Becherer JD, Olson L, Ravani S, Chatzianastasiou A, Papapetropoulos A, Andrzejewski S (July 2022). “Orally Bioavailable Enzymatic Inhibitor of CD38, MK-0159, Protects against Ischemia/Reperfusion Injury in the Murine Heart”. Journal of Medicinal Chemistry 65 (13): 9418–9446. doi:10.1021/acs.jmedchem.2c00688. PMID 35762533. 
  49. ^ Chen PM, Katsuyama E, Satyam A, Li H, Rubio J, Jung S, Andrzejewski S, Becherer JD, Tsokos MG, Abdi R, Tsokos GC (June 2022). “CD38 reduces mitochondrial fitness and cytotoxic T cell response against viral infection in lupus patients by suppressing mitophagy”. Science Advances 8 (24): eabo4271. Bibcode2022SciA....8O4271C. doi:10.1126/sciadv.abo4271. PMC 9200274. PMID 35704572. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200274/. 
  50. ^ Ugamraj HS, Dang K, Ouisse LH, Buelow B, Chini EN, Castello G, Allison J, Clarke SC, Davison LM, Buelow R, Deng R, Iyer S, Schellenberger U, Manika SN, Bijpuria S, Musnier A, Poupon A, Cuturi MC, van Schooten W, Dalvi P (2022). “TNB-738, a biparatopic antibody, boosts intracellular NAD+ by inhibiting CD38 ecto-enzyme activity”. mAbs 14 (1): 2095949. doi:10.1080/19420862.2022.2095949. PMC 9311320. PMID 35867844. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9311320/. 
  51. ^ Camacho-Pereira J, Tarragó MG, Chini CC, Nin V, Escande C, Warner GM, Puranik AS, Schoon RA, Reid JM, Galina A, Chini EN (June 2016). “CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism”. Cell Metabolism 23 (6): 1127–1139. doi:10.1016/j.cmet.2016.05.006. PMC 4911708. PMID 27304511. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911708/. 
  52. ^ Schultz MB, Sinclair DA (June 2016). “Why NAD(+) Declines during Aging: It's Destroyed”. Cell Metabolism 23 (6): 965–966. doi:10.1016/j.cmet.2016.05.022. PMC 5088772. PMID 27304496. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5088772/. 
  53. ^ Tarragó MG, Chini CC, Kanamori KS, Warner GM, Caride A, de Oliveira GC, Rud M, Samani A, Hein KZ, Huang R, Jurk D, Cho DS, Boslett JJ, Miller JD, Zweier JL, Passos JF, Doles JD, Becherer DJ, Chini EN (May 2018). “A Potent and Specific CD38 Inhibitor Ameliorates Age-Related Metabolic Dysfunction by Reversing Tissue NAD+ Decline”. Cell Metabolism 27 (5): 1081–1095.e10. doi:10.1016/j.cmet.2018.03.016. PMC 5935140. PMID 29719225. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5935140/. 
  54. ^ a b Cambronne XA, Kraus WL (2020). “Location, Location, Location: Compartmentalization of NAD + Synthesis and Functions in Mammalian Cells”. Trends in Biochemical Sciences 45 (10): 858–873. doi:10.1016/j.tibs.2020.05.010. PMC 7502477. PMID 32595066. https://www.jbc.org/content/294/52/19831.long. 
  55. ^ Kang BE, Choi J, Stein S, Ryu D (2020). “Implications of NAD + boosters in translational medicine”. European Journal of Clinical Investigation 50 (10): e13334. doi:10.1111/eci.13334. PMID 32594513. 
  56. ^ a b c Yarbro JR, Emmons RS, Pence BD (2020). “Macrophage Immunometabolism and Inflammaging: Roles of Mitochondrial Dysfunction, Cellular Senescence, CD38, and NAD”. Immunometabolism 2 (3): e200026. doi:10.20900/immunometab20200026. PMC 7409778. PMID 32774895. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7409778/. 
  57. ^ Oishi Y, Manabe I (2016). “Macrophages in age-related chronic inflammatory diseases”. npj Aging and Mechanisms of Disease 2: 16018. doi:10.1038/npjamd.2016.18. PMC 5515003. PMID 28721272. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5515003/. 
  58. ^ Covarrubias AJ, Kale A, Perrone R, Lopez-Dominguez JA, Pisco AO, Kasler HG, Schmidt MS, Heckenbach I, Kwok R, Wiley CD, Wong HS, Gibbs E, Iyer SS, Basisty N, Wu Q, Kim IJ, Silva E, Vitangcol K, Shin KO, Lee YM, Riley R, Ben-Sahra I, Ott M, Schilling B, Scheibye-Knudsen M, Ishihara K, Quake SR, Newman J, Brenner C, Campisi J, Verdin E (November 16, 2020). “Senescent cells promote tissue NAD + decline during ageing via the activation of CD38 + macrophages”. Nature Metabolism 2 (11): 1265–1283. doi:10.1038/s42255-020-00305-3. PMC 7908681. PMID 33199924. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7908681/. 

関連文献[編集]

  • States DJ, Walseth TF, Lee HC (December 1992). “Similarities in amino acid sequences of Aplysia ADP-ribosyl cyclase and human lymphocyte antigen CD38”. Trends in Biochemical Sciences 17 (12): 495. doi:10.1016/0968-0004(92)90337-9. PMID 1471258. 
  • Malavasi F, Funaro A, Roggero S, Horenstein A, Calosso L, Mehta K (March 1994). “Human CD38: a glycoprotein in search of a function”. Immunology Today 15 (3): 95–7. doi:10.1016/0167-5699(94)90148-1. PMID 8172650. 
  • Guse AH (May 1999). “Cyclic ADP-ribose: a novel Ca2+-mobilising second messenger”. Cellular Signalling 11 (5): 309–16. doi:10.1016/S0898-6568(99)00004-2. PMID 10376802. 
  • Funaro A, Malavasi F (1999). “Human CD38, a surface receptor, an enzyme, an adhesion molecule and not a simple marker”. Journal of Biological Regulators and Homeostatic Agents 13 (1): 54–61. PMID 10432444. 
  • Mallone R, Perin PC (2006). “Anti-CD38 autoantibodies in type? diabetes”. Diabetes/Metabolism Research and Reviews 22 (4): 284–94. doi:10.1002/dmrr.626. PMC 2763400. PMID 16544364. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2763400/. 
  • Partidá-Sánchez S, Rivero-Nava L, Shi G, Lund FE (2007). “CD38: an ecto-enzyme at the crossroads of innate and adaptive immune responses”. Crossroads between Innate and Adaptive Immunity. Advances in Experimental Medicine and Biology. 590. pp. 171–83. doi:10.1007/978-0-387-34814-8_12. ISBN 978-0-387-34813-1. PMID 17191385. https://archive.org/details/isbn_9780387348131/page/171 
  • Jackson DG, Bell JI (April 1990). “Isolation of a cDNA encoding the human CD38 (T10) molecule, a cell surface glycoprotein with an unusual discontinuous pattern of expression during lymphocyte differentiation”. Journal of Immunology 144 (7): 2811–5. PMID 2319135. 
  • Dianzani U, Bragardo M, Buonfiglio D, Redoglia V, Funaro A, Portoles P, Rojo J, Malavasi F, Pileri A (May 1995). “Modulation of CD4 lateral interaction with lymphocyte surface molecules induced by HIV-1 gp120”. European Journal of Immunology 25 (5): 1306–11. doi:10.1002/eji.1830250526. PMID 7539755. 
  • Nakagawara K, Mori M, Takasawa S, Nata K, Takamura T, Berlova A, Tohgo A, Karasawa T, Yonekura H, Takeuchi T (1995). “Assignment of CD38, the gene encoding human leukocyte antigen CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase), to chromosome 4p15”. Cytogenetics and Cell Genetics 69 (1–2): 38–9. doi:10.1159/000133933. PMID 7835083. 
  • Tohgo A, Takasawa S, Noguchi N, Koguma T, Nata K, Sugimoto T, Furuya Y, Yonekura H, Okamoto H (November 1994). “Essential cysteine residues for cyclic ADP-ribose synthesis and hydrolysis by CD38”. The Journal of Biological Chemistry 269 (46): 28555–7. doi:10.1016/S0021-9258(19)61940-X. PMID 7961800. 
  • Takasawa S, Tohgo A, Noguchi N, Koguma T, Nata K, Sugimoto T, Yonekura H, Okamoto H (December 1993). “Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38 and inhibition of the hydrolysis by ATP”. The Journal of Biological Chemistry 268 (35): 26052–4. doi:10.1016/S0021-9258(19)74275-6. PMID 8253715. 
  • Nata K, Takamura T, Karasawa T, Kumagai T, Hashioka W, Tohgo A, Yonekura H, Takasawa S, Nakamura S, Okamoto H (February 1997). “Human gene encoding CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase): organization, nucleotide sequence and alternative splicing”. Gene 186 (2): 285–92. doi:10.1016/S0378-1119(96)00723-8. PMID 9074508. 
  • Feito MJ, Bragardo M, Buonfiglio D, Bonissoni S, Bottarel F, Malavasi F, Dianzani U (August 1997). “gp 120s derived from four syncytium-inducing HIV-1 strains induce different patterns of CD4 association with lymphocyte surface molecules”. International Immunology 9 (8): 1141–7. doi:10.1093/intimm/9.8.1141. PMID 9263011. 
  • Ferrero E, Malavasi F (October 1997). “Human CD38, a leukocyte receptor and ectoenzyme, is a member of a novel eukaryotic gene family of nicotinamide adenine dinucleotide+-converting enzymes: extensive structural homology with the genes for murine bone marrow stromal cell antigen 1 and aplysian ADP-ribosyl cyclase”. Journal of Immunology 159 (8): 3858–65. PMID 9378973. 
  • Deaglio S, Morra M, Mallone R, Ausiello CM, Prager E, Garbarino G, Dianzani U, Stockinger H, Malavasi F (January 1998). “Human CD38 (ADP-ribosyl cyclase) is a counter-receptor of CD31, an Ig superfamily member”. Journal of Immunology 160 (1): 395–402. PMID 9551996. 
  • Yagui K, Shimada F, Mimura M, Hashimoto N, Suzuki Y, Tokuyama Y, Nata K, Tohgo A, Ikehata F, Takasawa S, Okamoto H, Makino H, Saito Y, Kanatsuka A (September 1998). “A missense mutation in the CD38 gene, a novel factor for insulin secretion: association with Type II diabetes mellitus in Japanese subjects and evidence of abnormal function when expressed in vitro”. Diabetologia 41 (9): 1024–8. doi:10.1007/s001250051026. PMID 9754820. 

外部リンク[編集]