铸铁

本页使用了标题或全文手工转换
维基百科,自由的百科全书
铸铁產品的例子

铸铁(英語:Cast iron)是含量超過2%,含量1-3%的鐵碳合金的總稱[1]。其用途源自於其比較低的熔點,適合用在铸造上。铸铁合金中的元素決定了其中碳存在的型式:白口鑄鐵(white cast iron)裡的碳和鐵結合成為雪明碳鐵(Fe3C),硬度很高,但質脆,上面若有裂紋,會沿著雪明碳鐵延伸。灰口铸铁(grey cast iron)其中有石墨片,會使裂紋偏轉,在材料破裂時會引發無數的裂紋。球墨鑄鐵英语Ductile iron中的石墨成球狀,不會讓裂紋繼續成長。

铸铁中鐵以外的主要元素有碳(C)和矽(Si),碳的重量百分比在1.8-4%,矽的的重量百分比在1-3%。若鐵碳合金中碳的含量低於1.8%,一般會稱為

鑄鐵具有脆性(但可锻铸铁除外)。鑄鐵的熔點較低,具有良好的流動性以及可鑄性英语castability、優良的加工性英语Machinability,形變抵抗性以及耐磨性,因此是許多應用的良好工程材料,用在鑄鐵管英语Cast iron pipe、機械件以及汽車元件,像是汽缸蓋汽缸本體以及变速器齒輪箱外殼。鑄鐵有抗氧化的特性,但非常難以焊接

最早的鑄鐵製品源自西元前五世紀,是考古学家在現今中國的江蘇所發現。中國古代將鑄鐵用在武器、農具以及建築上[2]。在西元15世紀時,英國和法國已將鑄鐵用在大砲上。由於大量的大砲鑄鐵需求,引發了大規模的鑄鐵製造[3]。第一座鑄鐵橋是在1770年代是由亞伯拉罕·達比三世英语Abraham Darby III所製,位在英格蘭施羅普郡,名為「鐵橋」(Iron Bridge)。鑄鐵也可以用在建築物英语Cast-iron architecture上。

製造[编辑]

鑄鐵是由生鐵製成,生鐵則是鐵礦在高爐中熔解所得的產物。鑄鐵可以直接從熔化的生鐵製成,也可以將生鐵再熔化來製造[4],過程中常會加入一定比例的鐵、鋼、石灰石、碳(煤焦),並且經過許多步驟,以去除其中不想要的成份。鐵裡面的可能會在鐵熔化時燒掉,但同時也會將碳燒掉,因此需要再補充碳。依照用途的不同,會將碳和矽調整到適當的比例,分別約在2–3.5%及1–3%之間。若有需要,可以在鑄造之前,在熔化的生鐵中加入其他化學元素[來源請求]

鑄鐵的熔化有時會用一種稱為cupola英语cupola furnace的高爐,在現代的應用中,多半會用電感應爐英语induction furnace或是電弧爐來熔化鑄鐵[5]。在鑄鐵完全熔化後,再倒進保持爐(holding furnace)中[來源請求]

分类[编辑]

合金元素[编辑]

鐵-雪明碳鐵 相圖

在鑄鐵中加入一些合金元素,可以改變鑄鐵的性質。是僅次於碳的重要合金元素,矽可以讓碳不被溶進鑄鐵溶液中。含矽量較少的鑄鐵會讓碳維持在溶液中,形成雪明碳鐵,使鑄鐵為白口鑄鐵。含矽量較少的鑄鐵會讓碳以石墨的形態存在,使鑄鐵為灰口鑄鐵。其他的合金元素,像是會抵消矽的作用,讓碳留在溶液中,形成雪明碳鐵。鎳和銅會增加強度以及可加工性,但不會影響所形成的石墨量。鑄鐵裡的石墨讓鐵比較軟,減少冷卻時的收縮量,降低強度及密度。鑄鐵中不希望出現,硫會和鐵形成硫化亞鐵,使石墨無法形成,並且增加硬度。硫會讓熔化的鑄鐵出現粘滯性,增加產品的瑕疵。若要減少硫的影響,可以加入,錳和硫會形成硫化錳,減少硫化亞鐵的形成。而硫化錳的密度比熔化的鑄鐵輕,因此會浮在鑄鐵液上,形成爐渣。為了要中和硫的影響,所加入錳的量的是1.7 × 硫濃度 + 0.3%。若加入的錳超過此量,會形成碳化錳,增加硬度及chilling英语chill (foundry),但在灰口鑄鐵中,錳最多可以到1%,可以提高強度及密度[6]

是常見合金元素之一,可以細緻化波來鐵及石墨組織,提高韌性,消除截面厚度之間的硬度差異。鑄鐵中加入少量的可以減少游離態的石墨,產生chill,是有效的碳化物穩定劑,也常會將鎳一起加入。可以加入少量的,取代0.5%的鉻。會在熔爐中加入約0.5–2.5%的銅,以滅少chill,使石墨組織細緻化,增加流動性。會加入0.3–1%以增加chill,使石墨及波來鐵組織細,常會和鎳、銅及鉻一起加入,以形成高強度的鐵。主要是當除氣劑以及除氧劑,但也會增流動性。可以加入0.15–0.5%的以穩定雪明碳鐵,增加硬度,增加抗磨,抗熱的能力。0.1–0.3%的可以形成石墨,作為除氧劑,並提高流動性[6]

可鍛鑄鐵中會加入0.002–0.01%的,以增加可以加入矽的量。白口鑄鐵中可以加入,以增加可鍛鑄鐵的產量,也會減少鉍的粗化效果[6]

灰口铸铁[编辑]

灰口铸铁(简称灰铸铁,英语:Grey cast iron),石墨呈片状,其成本低廉,铸造性、加工性、减震性及金属间摩擦性均优良,时至今日仍然是工业中应用最广泛的铸铁类型。但是,由于片状石墨对基体的严重割裂作用,灰铸铁的塑性差.其拉伸强度韌性都比鋼要低,但其抗壓強度接近低碳鋼和中碳鋼。灰口铸铁的含碳量約在2.5–4.0%,含矽量為1–3%。灰口铸铁的機械特性是由其微結構中片狀石墨的大小以及形狀所決定,在美國材料和試驗協會的指引中有說明其特性[7]

白口铸铁[编辑]

白口铸铁(White cast iron)的断口呈白亮色,是因為其中析出的碳化三鐵雪明碳鐵)。若鑄鐵中的含矽量較低,冷卻速率較快時,铸铁中的碳會以準穩態的雪明碳鐵(Fe3C)型式析出。析出的雪明碳鐵會形成相對較大的顆粒。在碳化三鐵析出後,會使鑄鐵液中的碳減少,混合物會較接近共晶狀態,剩下的會形成含碳量較低的沃斯田鐵(冷卻時可能會變成麻田散鐵)。共晶的碳化物若顆粒較小,可在肥粒鐵基質中抑制差排的移動,抑制塑性變形,此稱為析出硬化(precipitation hardening)。但白口铸铁中的雪明碳鐵顆粒太大,無此效果。不過因為雪明碳鐵的高硬度以及其體積比例較大,因此可以提高铸铁的整體硬度(整體硬度可以用個別成份的硬度乘上其比例來近似)。白口铸铁的硬度提高,但其缺點是韌性較低。白口铸铁性质脆硬,不適合用在結構元件中,但因為其硬度,抗磨,而且價值較低,會用在渣浆泵英语slurry pump易磨擦的表面(葉輪渦卷泵英语Volute (pump))、球磨机以及自磨機的外殼襯板及提料肋板、煤礦粉碎機的balls and rings、鏟斗機的齒(不過鑄造的中碳麻田散鋼更適合此一應用)[來源請求]

冷硬铸铁辊輪的截面

很難將較厚的鑄鐵材料快速冷卻,使其完全形成白口鑄鐵的結構。不過可以將大的構件快速冷卻,使其表面為較硬的白口鑄鐵,內層冷卻的較慢,仍然是灰口鑄鐵。這類的鑄鐵稱為冷硬铸铁(chilled casting),外層較硬,內層韌性較強[來源請求]

白口铸铁是制造可锻铸铁的中间品。

可锻铸铁[编辑]

可锻铸铁(Malleable cast iron)是由一定成分的白口铸铁经石墨化退火(2-9天)获得的,石墨呈团絮状,塑性比灰铸铁高。根据金相组织的不同分为黑心可锻铸铁、珠光体可锻铸铁和白心可锻铸铁。[8]

球墨铸铁[编辑]

球墨铸铁(Ductile cast iron)是将白口铸铁经过球化和孕育处理后得到的高性能铸铁,析出的石墨呈球状故称为球墨铸铁。球墨铸铁的塑性和韧性相对于普通铸铁都得到了大幅度提高,故而可以在一些范围“以铁代钢”。

蠕墨铸铁[编辑]

蠕墨铸铁中石墨呈蠕虫状,头部较圆、具有比灰铸铁强度高,比球墨铸铁铸造性能好、耐热疲劳性能好的优点。

合金铸铁[编辑]

合金铸铁(Alloy cast iron)添加等元素,便于热处理时改善组织从而改进强度、耐磨性。

参见[编辑]

参考文献[编辑]

  1. ^ Campbell, F.C. Elements of Metallurgy and Engineering Alloys有限度免费查阅,超限则需付费订阅. Materials Park, Ohio: ASM International. 2008: 453. ISBN 978-0-87170-867-0. 
  2. ^ Wagner, Donald B. Iron and Steel in Ancient China. BRILL. 1993: 335–340. ISBN 978-90-04-09632-5. 
  3. ^ Krause, Keith. Arms and the State: Patterns of Military Production and Trade. Cambridge University Press. August 1995: 40. ISBN 978-0-521-55866-2. 
  4. ^ Electrical Record and Buyer's Reference. Buyers' Reference Company. 1917 (英语). 
  5. ^ Harry Chandler. Metallurgy for the Non-Metallurgist illustrated. ASM International. 1998: 54. ISBN 978-0-87170-652-2.  Extract of page 54
  6. ^ 6.0 6.1 6.2 Gillespie, LaRoux K. Troubleshooting manufacturing processes 4th. SME. 1988: 4–4. ISBN 978-0-87263-326-1. 
  7. ^ Committee, A04. Test Method for Evaluating the Microstructure of Graphite in Iron Castings. doi:10.1520/a0247-10. 
  8. ^ 安继儒. 中外常用金属材料手册. 陕西科学技术出版社. 1998: 1. ISBN 9787536928930.