零環

出典: フリー百科事典『ウィキペディア(Wikipedia)』
Jump to navigation Jump to search

数学の分野である環論において、零環: the zero ring[1][2][3][4][5]または自明環 (trivial ring) は1つの元からなる(同型を除いて)唯一のである。(あまり一般的ではないが、“零環 (zero ring)”という用語は任意の rng of square zero, すなわちすべての xy に対して xy = 0 であるような rng を指すために使われることもある。この記事では1つの元からなる環の意味で使う。)

環の圏において、零環は終対象である。始対象は有理整数環 Z である。

定義[編集]

零環は一元集合 {0} において演算 + と · を 0 + 0 = 0 と 0 · 0 = 0 で定義したものであり、{0} あるいは単に 0 と表記される。

性質[編集]

  • 零環は加法の単位元 0 と乗法の単位元 1 が一致する唯一の環である[6][7]。(証明:環 R において 1 = 0 であれば、R のすべての元 r に対して r = 1r = 0r = 0 である。)
  • 零環は可換環である。
  • 零環の元 0 は単元であり、その乗法に関する逆元は自分自身である。
  • 零環の単数群は自明群 {0} である。
  • 零環の元 0 は零因子ではない。
  • 零環の唯一のイデアルは零イデアル {0} であり、これは単位イデアルでもあり、環全体に等しい。このイデアルは極大イデアルでも素イデアルでもない。
  • 零環はでない。実は、整域ですらない[8]。元の数が2よりも少ない体は存在しない。(数学者が「一元体」と言うときには、存在しない対象に言及しているのであり、彼らの意図は、もしこの対象が存在すればその上のスキームの圏となるであろう圏を定義する事である。)
  • 任意の環 A に対して、A から零環への環準同型がただ1つ存在する。したがって零環は環の圏における終対象である[9]
  • A が零環でなければ、零環から A への環準同型は存在しない。とくに、零環は零環でないどんな環の部分環でもない[10]
  • 零環の標数は 1 である。
  • 零環上の唯一の加群は零加群である。これは任意の基数 א に対しランク א の自由加群である。
  • 零環は局所環ではない。しかしながら、半局所環ではある。
  • 環のスペクトルは空概型である[11]
  • 零環は半単純だが単純ではない。
  • 零環はどんな体上の中心的単純環でもない。
  • 零環の全商環はそれ自身である。

構成[編集]

  • 任意の環 AA のイデアル I に対し、剰余環 A/I が零環であることと I単位イデアルであることは同値である。
  • 任意の可換環 AA乗法的集合 S に対し、局所化 S−1A が零環であることと S が 0 を含むことは同値である。
  • A が任意の環であれば、A 上の 0 × 0 行列の環 M0(A) は零環である。
  • 環からなる空の集まりの直積は零環である。
  • 自明群自己準同型環は零環である。
  • 位相空間上の実数値連続関数のなす環は零環である。

脚注[編集]

  1. ^ Artin, p. 347.
  2. ^ Atiyah and Macdonald, p. 1.
  3. ^ Bosch, p. 10.
  4. ^ Bourbaki, p. 101.
  5. ^ Lam, p. 1.
  6. ^ Artin, p. 347.
  7. ^ Lang, p. 83.
  8. ^ Bosch, p. 10.
  9. ^ Hartshorne, p. 80.
  10. ^ Hartshorne, p. 80.
  11. ^ Hartshorne, p. 80.

参考文献[編集]