関数の極限

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動先: 案内検索

関数の極限(かんすうのきょくげん)とは、ある関数において、変数がある値に限りなく近づくとき、それに応じて、関数の値が一定の値に限りなく近づく場合、この一定の値のことである。 このとき、関数は収束するという。

極限を表す記号として、次のような lim (英語:limit、リミット、ラテン語:limes)という記号が一般的に用いられる。

変数の収束に伴う関数の挙動[編集]

f(x) を実関数とし、c を実数とする。式

または

x の値を c に“十分に近づければ” f(x) の値を L に望む限りいくらでも近づけることができることを意味する。このとき「xc に近づけたときの f(x) の極限は L である」という。これはイプシロン-デルタ論法により

という形で厳密に定義される。このとき、この極限と関数 f(x) の x = c における値は無関係であり、f(c) ≠ L であることもあれば fc において定義されている必要もないのである。

このことを理解するために次の例を挙げる。

に近づくときの の値を考える。 この場合、 のときに定義されており、値は である。

が 2 に近づくにつれて に近づいていく。したがって、 である。このように であるとき、連続であるという。しかし、このようなことが常に成り立つとは限らない。

例として、

を考える。 に近づくときの の極限は であるが、 である。このとき で連続でないという。

また、のとき、f(x)の値が限りなく大きくなることを、「xがcに限りなく近づくとき関数f(x)は正の無限大に発散する」といい、

または

と表す。このことは次のように厳密に定義される。

逆に、のとき、f(x)の値が限りなく小さくなることを、「xがcに限りなく近づくとき関数f(x)は負の無限大に発散する」といい、

または

と表す。これは次のように厳密に定義される。

連続な実関数 f(x) が xc とする極限において発散するならば、f(x) は x = c において定義できない。なぜなら、定義されていたとすると x = c は不連続点となるからである。

無限遠点における挙動[編集]

一般には がある有限の値に近づくときを考えることが多いが、 が正か負の無限に近づくときの関数の極限を定義することもできる。

ある無限区間(もしくはでもよい)で定義される関数f(x)において、xが限りなく大きくなると関数f(x)の値がある値Lに近づくとき、「xが限りなく大きくなるときf(x)はLに収束する」といい、

または

と表す。

これは次のように定義される。

例えば、 を考える。

x が十分大きくなるにつれて、 に近づく。このとき、 と表す。


また、ある無限区間(もしくはでもよい)で定義される関数f(x)において、xが限りなく小さくなると関数f(x)の値がある値Lに近づくとき、「xが限りなく小さくなるときf(x)はLに収束する」といい、

または

と表す。

これは次のように定義される。

関数の無限における極限においても、関数の発散を考えることができる。

ある無限区間(もしくはでもよい)で定義される関数f(x)において、xが限りなく大きくなると関数f(x)の値も限りなく大きくなるとき、「xが限りなく大きくなるときf(x)は正の無限大に発散する」といい、

または

と表す。

これは次のように定義される。

また、ある無限区間(もしくはでもよい)で定義される関数f(x)において、xが限りなく小さくなると関数f(x)の値が限りなく大きくなるとき、「xが限りなく小さくなるときf(x)は正の無限大に発散する」といい、

または

と表す。

これは次のように定義される。

同様に、における負の無限大への発散を定義することができる。

において、関数f(x)が収束もせず、また正の無限大にも負の無限大にも発散しない場合、その関数は数列と同様に振動するという。

関連項目[編集]