ニュートン力学

出典: フリー百科事典『ウィキペディア(Wikipedia)』
運動の法則から転送)
移動先: 案内検索
『自然哲学の数学的諸原理』初版

ニュートン力学(ニュートンりきがく、英語: Newtonian mechanics)は、アイザック・ニュートンが、運動の法則を基礎として構築した、力学の体系のことである[1]。 「ニュートン力学」という表現は、アインシュタインの相対性理論、あるいは量子力学などと対比して用いられる[1]

概要[編集]

静止物体に働くの釣り合いを扱う静力学は、ギリシア時代からの長い年月の積み重ねにより、すでにかなりの知識が蓄積されていた[1]。ニュートン力学の偉大さは、物体の運動について調べる動力学を確立したところにある[1]

ニュートン力学は古典物理学の不可欠の一角を成している。「絶対時間」と「絶対空間」を前提とした上で、3 つの運動の法則運動の第1法則第2法則第3法則)と、万有引力の法則を代表とする二体間の遠隔作用として働くを基礎とした体系である。広範の力学現象を演繹的かつ統一的に説明し得る体系となっている。

Principia1846-513、 落体運動と周回運動の統一的な見方が示されている.

ニュートン力学は、1687年のニュートン自身による、3巻から成る著作『自然哲学の数学的諸原理』(略称: プリンキピア、Principia)を通して公表された[1]。ニュートン力学の主要な点はすべてこの中に含まれていると言ってもよい[1]

『プリンキピア』の表現形式は、ユークリッド原論に倣った作図を用いて幾何学的証明を積み上げる方式を採っている。この表現の中には、エルンスト・マッハが指摘したように十分に論理的とは言えない点も含まれており、その後の時代の多くの人々によって整理しなおされ、別の説明方法も与えられている[1]。 今日的な「ニュートン力学」の解説は『プリンキピア』とは様相が異なったものとなっており、大学などで「ニュートン力学」と呼ばれている体系は、これを出発点としつつも多くの人々によって改良された、相対論以前の古典力学の体系と見なすのが適切である。

『プリンキピア』の冒頭部分は質量運動量慣性などの定義にあてられているが[2]重さという概念の他に質量という概念を導入したことが画期的だとされている[1]

なお、一般向けの図書などで、「ニュートンが運動に関する原理を発見した」といった表現がされることもあるが、物理学史的な研究の立場からは、先人であるシモン・ステヴィンエドム・マリオットガリレオ・ガリレイヨハネス・ケプラーらによって既に定量的に発見、研究されていた法則や、ルネ・デカルトの考え方、あるいは同時代に活動したロバート・フックを代表とする科学者自然哲学者たちが得ていた知見を、ニュートンが数学的記述を用いて体系的にまとめあげた面が大きいことも指摘されている。

質点に関する運動の法則[編集]

プリンキピア内の第一法則と第二法則が書かれているページ(1687年版)

ニュートン力学は、物体を「重心に全質量が集中し大きさをもたない質点」とみなし、その質点の運動に関する性質を法則化し、以下の運動の3法則を提唱した[3][注釈 1]。また、これらの法則は、質点とは見なせない物体(剛体弾性体流体などの連続体)に対しても基礎となる考え方である[4][5]

第1法則慣性の法則)
質点は、が作用しない限り、静止または等速直線運動する(これを満たすような座標系を用いて、運動法則を記述する)[6][注釈 2]
第2法則ニュートンの運動方程式
質点の加速度 は、そのとき質点に作用する に比例し、質点の質量 に反比例する[7][注釈 3][注釈 4]
第3法則(作用・反作用の法則)[8][注釈 5]
二つの質点 1, 2 の間に相互に力が働くとき、質点 2 から質点 1 に作用する力 と、質点 1 から質点 2 に作用する力 は、大きさが等しく、逆向きである。
第3法則(作用・反作用の法則)の応用 (速度Vを含む作用・反作用の法則)[9]


力学分野における数多くの法則や定理は、基本的には、上の三つの法則から導出されるものである。 また、位置ベクトルの時間に対する 2 階の常微分方程式である運動方程式は、ある時刻の位置と運動量(あるいは速度)を与えれば、あらゆる時刻の運動状態が確定する方程式であり、その意味で、ニュートン力学は決定論的であるとされる。


*補記(注記):上記によれば、「・・質点 2 から質点 1 に『作用』する力と、質点 1 から質点 2 に『作用』する力は、大きさが等しく、逆向きである」という。

しかしながら、このような表記では、厳密に云えば、文字通り、作用・作用の法則を記述したものに過ぎず、必ずしも、作用・反作用の法則を正当に表したものと言えない。
是をして、なお正確に云えば、さほど、質点 2 から質点 1 に作用する力と、質点 1 から質点 2 に反作用する力か、
もしくは、質点 2 が質点 1 に与える作用力と、質点 1 が質点 2から受ける反作用力は、大きさが等しく、逆向きであると表記するのが望ましい。
なぜなら、それは、無論、作用反作用の法則=力のつり合いの原理などでないからであり、
既定の第3法則上の表記では、専ら、質点 2 が自ずから、質点 1 に作用する力と、質点 1 が自ずと、質点 2 に作用する力が同等、
即ち、作用反作用の関係にあれば、全て、力がつりあっている・・・などと少なからず、誤解してしまうからである。

継承と発展[編集]

古典力学

運動の第2法則
歴史英語版

ニュートンの力学は、その後、ダニエル・ベルヌーイレオンハルト・オイラーピエール・ルイ・モーペルテュイジャン・ル・ロン・ダランベールジョゼフ=ルイ・ラグランジュピエール=シモン・ラプラスガスパール=ギュスターヴ・コリオリらによって、今日的な力学体系の形にまとめ直され、ラグランジュやウィリアム・ローワン・ハミルトンによる解析力学へと発展した。

電磁気学19世紀に発展した結果、電磁気学とニュートン力学が互いに矛盾することが問題となった。電磁気学における基本方程式であるマクスウェル方程式は、ニュートン力学における運動方程式と異なり、ガリレイ変換に対する不変性を持たず、慣性系によらず電磁気学の法則が成り立つならばそれは相対性原理を修正することになる。逆に、ニュートン力学とガリレイの相対性原理が正しいならば、マクスウェル方程式は一般の慣性系では成り立たず、電磁気学を修正する必要がある。

19世紀末から20世紀初頭にかけて、ハインリッヒ・ヘルツジョージ・フィッツジェラルドヘンドリック・ローレンツアルベルト・アインシュタインらの仕事によって、マクスウェルの理論の正当性が検証され、ニュートン力学は修正されることになる。 修正された新しい力学は特殊相対性理論と呼ばれ、ガリレイの相対性原理ではなくアインシュタインの相対性原理を基礎とし、ローレンツ変換に対して普遍な力学である。

その後に発展した一般相対性理論までの完成された力学は「古典力学」と呼ばれ、1920年代に成立した量子力学と区別される。 量子力学では局所実在論が成立せず、その意味でニュートン力学などの古典論とは決定的に異なっている。

解析力学[編集]

ニュートン力学ラグランジュ形式ハミルトン形式で再定式化された。これらは、ニュートンの運動法則を座標系の取り方によらずに一般的に成立するように構成されたもので、ラグランジュ形式では、最小作用の原理変分原理)からニュートンの運動方程式を再現する。ハミルトン形式では、正準変数ポアソン括弧を用いることにより、ニュートンの運動方程式に対応する正準方程式を対称な形で表現することができる。

現代物理学での位置付け[編集]

現代の物理学の視点では、ニュートン力学は、「巨視的なスケールでかつ光速よりも十分遅い速さの運動を扱う際の、無矛盾・完結的な近似理論」と理解される。

特殊相対性理論は、物体の速さが光速よりも十分遅い条件下ではニュートン力学で十分近似されるし、量子力学の結果は、対象物体の質量を大きくした極限では、ニュートン力学の運動方程式の解と一致する。また、「ニュートンの万有引力理論は、重力が弱い場合の一般相対性理論の近似である。」とも言われる。例えば、人工衛星惑星探査までを含む宇宙航行の運動の予測を行う際には、ニュートン力学を用いて十分な精度で計算できる場合が多い。

出典[編集]

  1. ^ a b c d e f g h 『改訂版 物理学辞典』培風館
  2. ^ Newton (1729) pp. 1–7, Definitions .
  3. ^ 松田哲 (1993) pp. 17-24。
  4. ^ 砂川重信 (1993) 8 章。
  5. ^ 原康夫 (1988) 6-9 章。
  6. ^ Newton (1729) p. 19, Axioms or Laws of Motion . "Every body perseveres in its state of rest, or of uniform motion in a right line, unless it is compelled to change that state by forces impress'd thereon ".
  7. ^ Newton (1729) p. 19, Axioms or Laws of Motion . "The alteration of motion is ever proportional to the motive force impress'd; and is made in the direction of the right line in which that force is impress'd ".
  8. ^ Newton (1729) p. 20, Axioms or Laws of Motion . "To every Action there is always opposed an equal Reaction: or the mutual actions of two bodies upon each other are always equal, and directed to contrary parts ".
  9. ^ Newton (1729) p. 24, Axioms or Laws of Motion . "I was only willing to show by those examples the great extent and certainty of the third Law of motion.For if we estimate the action of the agent from its force and velocity conjunctly, and likewise the reaction of the impediment conjunctly from the velocities of its several parts,and from the forces of resistance arising from the attrition, cohesion, weight, and acceleration of those parts,the action and reaction in the use of all sorts of machines will be found always equal to one another. And so far as the action is propagated by the intervening instruments, and at last impressed upon the resisting body, the ultimate determination of the action will be always contrary to the determination of the reaction. "

注釈[編集]

  1. ^ 山本義隆 (1997) p.189 で述べられているように、このような現代的な表記と体系構築は主にオイラーによって与えられた。
  2. ^ 砂川重信 (1993) p. 9 で述べられているように、この法則は慣性系の宣言を果たす意味をもつため、第 2 法則とは独立に設置される必要がある。
  3. ^ この定義は比例(反比例)関係しか示されないが、結果的に比例係数が 1 となる単位系が設定され方程式となる。『バークレー物理学コース 力学 上』 pp. 71-72、堀口剛 (2011)
  4. ^ 兵頭俊夫 (2001) p. 15 で述べられているように、この原型がニュートンにより初めてもたらされた着想である。
  5. ^ エルンスト・マッハによれば、この第3法則は、質量の定義づけを補完する重要な役割をもつ(エルンスト・マッハ (1969))。

参考文献[編集]

関連項目[編集]