「密度汎関数理論」の版間の差分

ナビゲーションに移動 検索に移動
m
編集の要約なし
(en:Density functional theoryから一部和訳)
m
LDAにおいて、交換–相関エネルギーは典型的に交換部分と相関部分に分割される。
:{{math|''ε''<sub>XC</sub> {{=}} ''ε''<sub>X</sub> + ''ε''<sub>C</sub>}}
交換部分はデラック(または時にはスレイター)交換と呼ばれ、{{math|''ε''<sub>X</sub> ∝ ''n''<sup>1/3</sup>}}という形を取る。しかしながら、相関部分については多くの数学的形式が存在する。相関エネルギー密度{{math|''ε''<sub>C</sub>(''n''<sub>↑</sub>, ''n''<sub>↓</sub>)}} に対する精度の高い式は[[ジェリウムモデル|ジェリウム]]の[[量子モンテカルロ法|量子モンテカルロ]]シミュレーションから構築されてきた<ref>{{cite journal |title=Prescriptions for the design and selection of density functional approximations: More constraint satisfaction with fewer fits |first1=John P. |last1=Perdew |first2=Adrienn |last2=Ruzsinszky |first3=Jianmin |last3=Tao |first4=Viktor N. |last4=Staroverov |first5=Gustavo |last5=Scuseria |first6=Gábor I. |last6=Csonka |s2cid=13097889 |journal=Journal of Chemical Physics |volume=123 |page=062201 |year=2005 |doi=10.1063/1.1904565 |pmid=16122287 |issue=6 |bibcode=2005JChPh.123f2201P }}</ref>。単純な第一原理相関汎関数も最近提唱されている<ref>{{cite journal | title = Communication: Simple and accurate uniform electron gas correlation energy for the full range of densities | first = Teepanis | last = Chachiyo | journal = Journal of Chemical Physics | volume = 145 | page = 021101 | year = 2016 | doi = 10.1063/1.4958669 | pmid = 27421388 | issue = 2| bibcode = 2016JChPh.145b1101C | doi-access = free }}</ref><ref>{{cite journal | title = A simpler ingredient for a complex calculation | first = Richard J. | last = Fitzgerald | journal = Physics Today | volume = 69 | page = 20 | year = 2016 | doi = 10.1063/PT.3.3288 | issue = 9 | bibcode = 2016PhT....69i..20F }}</ref><ref>{{cite journal | title = Study of the first-principles correlation functional in the calculation of silicon phonon dispersion curves | first1 = Ukrit | last1 = Jitropas | first2 = Chung-Hao | last2 = Hsu| journal = Japanese Journal of Applied Physics | volume = 56 | issue = 7 | page = 070313 | year = 2017 | doi = 10.7567/JJAP.56.070313 | bibcode = 2017JaJAP..56g0313J }}</ref>。
 
LDAは密度がどこでも同じであることを仮定する。このため、LDAは交換エネルギーを過小評価し、相関エネルギーを過大評価する傾向を有する<ref>{{Cite journal |last=Becke |first=Axel D. |s2cid=33556753 |date=2014-05-14 |title=Perspective: Fifty years of density-functional theory in chemical physics |journal=The Journal of Chemical Physics |volume=140 |issue=18 |pages=A301 |doi=10.1063/1.4869598 |pmid=24832308 |issn=0021-9606 |bibcode = 2014JChPh.140rA301B }}</ref>。交換および相関部分による誤差はある程度互いに相殺し合う傾向がある。この傾向を補正するため、真の電子密度の不均質性を考慮に入れるために密度の勾配の観点から拡張するのが一般的である。これによって、ある座標から離れた密度の変化に基づいた補正が可能となる。これらの拡張は[[一般化勾配近似]](GGA)と呼ばれ<ref>{{cite journal |last1=Perdew |first1=John P. |last2=Chevary |first2=J. A. |last3=Vosko |first3=S. H. |last4=Jackson |first4=Koblar A. |last5=Pederson |first5=Mark R. |last6=Singh |first6=D. J. |last7=Fiolhais |first7=Carlos |title=Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation |journal=Physical Review B |date=1992 |volume=46 |issue=11 |pages=6671–6687 |doi=10.1103/physrevb.46.6671 |pmid=10002368 |bibcode = 1992PhRvB..46.6671P |hdl=10316/2535 |hdl-access=free}}</ref><ref>{{cite journal |last1=Becke |first1=Axel D. |title=Density-functional exchange-energy approximation with correct asymptotic behavior |journal=Physical Review A |date=1988 |volume=38 |issue=6 |pages=3098–3100 |doi=10.1103/physreva.38.3098 |bibcode=1988PhRvA..38.3098B |pmid=9900728}}</ref><ref>{{cite journal |last1=Langreth |first1=David C. |last2=Mehl |first2=M. J. |title=Beyond the local-density approximation in calculations of ground-state electronic properties |journal=Physical Review B |date=1983 |volume=28 |issue=4 |page=1809 |doi=10.1103/physrevb.28.1809 |bibcode=1983PhRvB..28.1809L }}</ref>、以下の形式を持つ。
ホーヘンベルグ・コーンの定理を拡張して、スピン密度汎関数理論を得ることができる。
 
いま[[スピン角運動量|スピン]]の[[量子化 (物理学)|量子化]]軸を''z''方向にとり、その方向に外部[[磁場]]<math>H(\boldsymbol r)</math>がかけられているとする。ハミルトニアンにゼーマン項を導入すると元来のホーヘンベルグ・コーンの第一定理と同様の議論で、外部ポテンシャルおよび外部磁場は基底状態の電子スピン密度<math>n_{\uparrow}(\boldsymbol r),n_{\downarrow}(\boldsymbol r)</math>の汎関数であることが示される。また同第二定理で示されているようなホーヘンベルグ・コーンのエネルギースピン密度汎関数<math>E_\mathrm{HK}[n_{\uparrow},n_{\downarrow}]</math>も構成することができる。
 
スピン密度汎関数理論に置けるコーン・シャム理論の構成も容易である。この枠組みで、LDAに対応する交換相関エネルギーに対する近似は特に[[LSDA|局所スピン密度近似]] (Local Spin Density Approximation, [[LSDA]]) と呼ばれることもある。

案内メニュー