「小行列式」の版間の差分

出典: フリー百科事典『ウィキペディア(Wikipedia)』
削除された内容 追加された内容
44行目: 44行目:
である。
である。


===逆行列===
=== 逆行列 ===
{{main|可逆行列}}
{{main|正則行列}}
正則行列の逆行列を[[クラメルの公式]]を用いてその余因子を計算することで以下のように書き下せる正方行列 {{mvar|A}} のての余因子を成分とす正方行列は'''余因子行列'''と呼ばれる:

:<math>\widetilde{A} = \begin{bmatrix}
可逆行列の逆行列を[[クラメルの法則]]を用いてその余因子を計算することで以下のように書き下せる正方行列 {{mathbf|A}} のすべての余因子からつくられ次の行列は'''余因子行列'''と呼ばれる:
\widetilde{a}_{11} &\widetilde{a}_{12} &\cdots &\widetilde{a}_{1n} \\

\widetilde{a}_{21} &\widetilde{a}_{22} &\cdots &\widetilde{a}_{2n} \\
:<math>\mathbf C=\begin{bmatrix}
C_{11} & C_{12} & \cdots & C_{1n} \\
\vdots & \vdots &\ddots & \vdots \\
C_{21} & C_{22} & \cdots & C_{2n} \\
\widetilde{a}_{n1} &\widetilde{a}_{n2} &\cdots &\widetilde{a}_{nn}
\vdots & \vdots & \ddots & \vdots \\
C_{n1} & C_{n2} & \cdots & C_{nn}
\end{bmatrix} </math>
\end{bmatrix} </math>
このとき {{mvar|A}} の逆行列は余因子行列の転置に {{mvar|A}} の行列式の逆数を掛けたものである:

:<math>A^{-1} = \frac{1}{\det(A)} \widetilde{A}^\mathsf{T}</math>
このとき {{mathbf|A}} の逆行列は余因子行列の転置に {{mathbf|A}} の行列式の逆数を掛けたものである:

:<math>\mathbf A^{-1} = \frac{1}{\det(\mathbf A)} \mathbf C^\mathsf{T}.</math>

余因子行列の転置は {{mathbf|A}} の'''{{仮リンク|古典随伴行列|label=随伴行列|en|Adjugate matrix}}''' (adjugate matrix) あるいは古典随伴行列と呼ばれる.
余因子行列の転置は {{mathbf|A}} の'''{{仮リンク|古典随伴行列|label=随伴行列|en|Adjugate matrix}}''' (adjugate matrix) あるいは古典随伴行列と呼ばれる.


72行目: 67行目:
\wedge e_{i'_1}\wedge\ldots \wedge e_{i'_{n-k}} </math>
\wedge e_{i'_1}\wedge\ldots \wedge e_{i'_{n-k}} </math>


である,ただし <math>e_1,\ldots,e_n</math> は基底ベクトルである.{{mathbf|A}} を両辺に作用させて
である,ただし <math>e_1,\cdots,e_n</math> は基底ベクトルである.{{mathbf|A}} を両辺に作用させて

:<math>[\mathbf A^{-1}]_{I,J}\det \mathbf A (e_1\wedge\ldots \wedge e_n) = \pm (e_{j_1})\wedge \ldots \wedge(e_{j_k})\wedge (\mathbf A e_{i'_1})\wedge\ldots \wedge (\mathbf A e_{i'_{n-k}})=\pm [\mathbf A]_{J',I'}(e_1\wedge\ldots \wedge e_n). </math>
:<math>[\mathbf A^{-1}]_{I,J}\det \mathbf A (e_1\wedge\ldots \wedge e_n) = \pm (e_{j_1})\wedge \ldots \wedge(e_{j_k})\wedge (\mathbf A e_{i'_1})\wedge\ldots \wedge (\mathbf A e_{i'_{n-k}})=\pm [\mathbf A]_{J',I'}(e_1\wedge\ldots \wedge e_n). </math>
符号は <math>(-1)^{\sum\limits_{s=1}^k i_s - \sum\limits_{s=1}^k j_s}</math> であることが計算できる.符号は {{math|''I'', ''J''}} の元の和によっても決定される.

符号は <math>(-1)^{ \sum_{s=1}^{k} i_s - \sum_{s=1}^{k} j_s}</math> であることが計算できる.符号は {{math|''I'', ''J''}} の元の和によっても決定される.


===他の応用===
===他の応用===

2020年12月23日 (水) 18:04時点における版

線型代数学において,行列 A小行列式(しょうぎょうれつしき,: minor, minor determinant)とは,A から1列以上の行や列を取り除いて得られる小さい正方行列行列式である.正方行列から行と列をただ1つずつ取り除いて得られる小行列式 (first minors; 第一小行列式) は行列の余因子 (cofactor) を計算するのに必要で,これは正方行列の行列式や逆行列の計算に有用である.

定義と説明

(i, j) 小行列式

正方行列 A(i, j) 小行列式 (minor, first minor[1]) とは、第 i 行と第 j 列を除いて得られる部分行列行列式のことである。この数はしばしば Mi,j と書かれる。(i, j) 余因子 (cofactor) とは、小行列式に (−1)i+j を掛けて得られる値のことである。

例えば、次の 3次正方行列を考える:

小行列式 M2,3 と余因子 C2,3 を計算するため,上の行列から第2行と第3列を除いた行列の行列式を求める。

したがって (2, 3) 余因子は

一般の定義

Am × n 行列とし,k を整数で 0 < km,n, とする.Ak × k 小行列式[注釈 1]A から mk 個の行と nk 個の列を除いて得られる k × k 行列の行列式である[注釈 2].上の行列 A に対して,全部で 個のサイズが k × k の小行列式が存在する.零次の小行列式 (Minor of order zero) はしばしば 1 と定義される(空積も参照のこと).対照的に、正方行列に対する第零小行列式 (zeroth minor) とは、単にその行列の行列式のことを言う[2][3]

1 ≤ i1 < i2 < ⋯ < ikm, 1 ≤ j1 < j2 < ⋯ < jkn を添え字の順序列とし(小行列式について話すときには特に断らない限りつねにそうであるように,自然な順序で),それらをそれぞれ I, J と呼ぶ.添え字のこれらの選択に対応する小行列式 detI,JA, [A]I,J, MI,J, Mi1, i2, ..., ik, j1, j2, ..., jk, M(i),(j) などと書かれる(ただし (i) は添え字の列 I を表す,等).また,文献によって2種類の意味がある:添え字 IJ の順序列に伴う小行列式によって,ある著者は[4]上のようにもとの行列の元を行は添え字が I に入っていて列は添え字が J に入っているものから取って作られる行列の行列式を意味し,他のある著者は IJ に伴う小行列式によってもとの行列から I の行と J の列を除去することで得られる行列の行列式を意味する[5].どの表記が使われているかはいつも確認すべきである.この記事では,I の行と J の列から元を選ぶ,含む方の定義を用いる.例外的な場合は (i, j) 小行列式の場合である;この場合,取り除く方の表記 がどの文献でも標準的であり,この記事においても用いる.

補小行列式

正方行列 A の小行列式 Mijk...,pqr... の補小行列式 Bijk...,pqr... は,A から Mijk...,pqr... に伴う行 (ijk...) と列 (pqr...) をすべて取り除いた行列の行列式である.(i, j) 小行列式の補小行列式は単に (i, j) 成分である[6]

小行列式と余因子の応用

行列式の余因子展開

余因子は行列式の展開のラプラスの公式において顕著に主役を演じる。これは次数が大きい行列式を次数が小さい行列式で計算する手法である。任意の n次正方行列 A = (aij) の行列式 det(A) は、行列の任意の行か列の余因子にそこの成分を掛けたものの総和に等しくなる。言い換えると,第 j 列に沿った余因子展開は

であり、第 i 行に沿った余因子展開は

である。

逆行列

正則行列の逆行列を、クラメルの公式を用いて、その余因子を計算することで以下のように書き下せる。正方行列 A の全ての余因子を成分とする正方行列は余因子行列と呼ばれる:

このとき A の逆行列は余因子行列の転置に A の行列式の逆数を掛けたものである:

余因子行列の転置は A随伴行列英語版 (adjugate matrix) あるいは古典随伴行列と呼ばれる.

上の公式は次のように一般化できる. を添え字の(自然な順序での)順序列とする(ここで An × n 行列である).このとき

である,ただし は添え字 I, J の補集合を自然な順序で並べた列である.よってどの添え字 1, ..., nI あるいは I′ の一方のみにちょうど一回現れる(JJ′ についても同様).また A の部分行列であって行の添え字が I で列の添え字が J であるものの行列式を表す.つまり, である.単純な証明はウェッジ積を用いて与えることができる.実際,

である,ただし は基底ベクトルである.A を両辺に作用させて、

符号は であることが計算できる.符号は I, J の元の和によっても決定される.

他の応用

実数(あるいは任意の他の)を成分とし,階数rm × n 行列が与えられると,少なくとも1つの 0 でない r × r 小行列式が存在し,それより大きいサイズの小行列式はすべて 0 である.

記号 [A]I,J は上の通りとする.

  • I = J のとき,[A]I,J主小行列式 (principal minor) と呼ばれる.
  • 主小行列式に対応する行列がもとの行列の左上の正方形の部分である(すなわち行と列が 1 から k)とき,主小行列式は首座小行列式 (leading principal minor (of order k), corner (principal) minor (of order k)) と呼ばれる[7]n × n 正方行列に対しては,n + 1 個の首座小行列式が存在する.
  • 行列の basic minor とは,行列式が 0 でないようなサイズが最大の正方部分行列の行列式である[8]
  • エルミート行列に対して,leading principal minor は正定値性の判定に使うことができ,主小行列式は半正定値性の判定に使うことができる.詳細はシルヴェスターの判定法英語版を参照.

通常の行列の乗法の公式と2つの行列の積の行列式のコーシー・ビネの公式はともに,2つの行列の積の小行列式についての次の一般的な主張の特別な場合である.

Am × n 行列,Bn × p 行列とし,Ik 個の元からなる {1,...,m}部分集合とし,Jk 個の元からなる {1,...,p} の部分集合とする.このとき

が成り立つ,ただし和は k 個の元を持つ {1, ..., n} の部分集合 K 全体を走る.この公式はコーシー・ビネの公式の直截的拡張である.

多重線型代数アプローチ

よりシステマティックには,小行列式の概念の代数学的な扱いはウェッジ積を用いて多重線型代数において与えられる:行列の k 次小行列式は k外冪写像の成分である.

行列の列が一度に k 回一緒にウェッジされると,k × k 小行列式は得られる k 次元ベクトルの成分として現れる.例えば,行列

2 × 2 小行列式は −13(最初の2行から),−7(最初と最後の行から),5(最後の2行から)である.さてウェッジ積

を考えよう,ただし2つの式は我々の行列の2つの行に対応する.ウェッジ積の性質を用いて,すなわち双線型性

を用いて,この数式は

となる,ここで係数は先に計算した小行列式と一致する.

異なる表記についての注意

ある本では[9] cofactor(余因子)の代わりに adjunct が使われている.さらに,それは Aij と書かれ,余因子と同じように定義される:

この表記を用いて,逆行列は次のように書かれる:

adjunct は adjugate や adjoint ではないことに注意.現代の用語では,行列の "adjoint" は対応する随伴作用素を指すことが最も多い.

関連項目

注釈

  1. ^ Ak × k 小行列式は Ak-次小行列式 (minor determinant of order k) とも呼ぶ。m = n のとき、Ak 個の行と列を除去して得られる正方小行列の行列式をk-小行列式と呼ぶ(第 k-小行列式は nk)-次小行列式であることに注意)。英語では "minor deternimant" の "determinant" はよく省略され、単に "minor" といった場合はふつう(小行列ではなく)小行列式の意味である。k-次 ("order" k) という代わりに次数 k ("degree" k) とも言う。
  2. ^ 英語では、行列 A から上で述べたように(mk 個の行と nk この列を削除して)得られる k × k 行列(k-次小行列)のことをして "minor" と呼ぶことも稀にあるが、そのようなものは A の "(square) submatrix" と呼んで、"minor" はその行列式を指すのに用いるのが普通である。

参考文献

  1. ^ Burnside, William Snow & Panton, Arthur William (1886) Theory of Equations: with an Introduction to the Theory of Binary Algebraic Form.
  2. ^ Elementary Matrix Algebra (Third edition), Franz E. Hohn, The Macmillan Company, 1973, ISBN 978-0-02-355950-1
  3. ^ Minor. Encyclopedia of Mathematics. http://www.encyclopediaofmath.org/index.php?title=Minor&oldid=30176
  4. ^ Linear Algebra and Geometry, Igor R. Shafarevich, Alexey O. Remizov, Springer-Verlag Berlin Heidelberg, 2013, ISBN 978-3-642-30993-9
  5. ^ Elementary Matrix Algebra (Third edition), Franz E. Hohn, The Macmillan Company, 1973, ISBN 978-0-02-355950-1
  6. ^ Bertha Jeffreys, Methods of Mathematical Physics, p. 135, Cambridge University Press, 1999 ISBN 0-521-66402-0.
  7. ^ Minor. Encyclopedia of Mathematics. http://www.encyclopediaofmath.org/index.php?title=Minor&oldid=30176
  8. ^ Minor. Encyclopedia of Mathematics. http://www.encyclopediaofmath.org/index.php?title=Minor&oldid=30176
  9. ^ Felix Gantmacher, Theory of matrices (1st ed., original language is Russian), Moscow: State Publishing House of technical and theoretical literature, 1953, p.491,

外部リンク