水銀

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索
水銀 タリウム
Cd

Hg

Cn
Element 1: 水素 (H), 非金属
Element 2: ヘリウム (He), 希ガス
Element 3: リチウム (Li), アルカリ金属
Element 4: ベリリウム (Be), 卑金属
Element 5: ホウ素 (B), 金属
Element 6: 炭素 (C), 非金属
Element 7: 窒素 (N), 非金属
Element 8: 酸素 (O), 非金属
Element 9: フッ素 (F), ハロゲン
Element 10: ネオン (Ne), 希ガス
Element 11: ナトリウム (Na), アルカリ金属
Element 12: マグネシウム (Mg), 卑金属
Element 13: アルミニウム (Al), 卑金属
Element 14: ケイ素 (Si), 金属
Element 15: リン (P), 非金属
Element 16: 硫黄 (S), 非金属
Element 17: 塩素 (Cl), ハロゲン
Element 18: アルゴン (Ar), 希ガス
Element 19: カリウム (K), アルカリ金属
Element 20: カルシウム (Ca), アルカリ土類金属
Element 21: スカンジウム (Sc), 遷移金属
Element 22: チタン (Ti), 遷移金属
Element 23: バナジウム (V), 遷移金属
Element 24: クロム (Cr), 遷移金属
Element 25: マンガン (Mn), 遷移金属
Element 26: 鉄 (Fe), 遷移金属
Element 27: コバルト (Co), 遷移金属
Element 28: ニッケル (Ni), 遷移金属
Element 29: 銅 (Cu), 遷移金属
Element 30: 亜鉛 (Zn), 卑金属
Element 31: ガリウム (Ga), 卑金属
Element 32: ゲルマニウム (Ge), 金属
Element 33: ヒ素 (As), 金属
Element 34: セレン (Se), 非金属
Element 35: 臭素 (Br), ハロゲン
Element 36: クリプトン (Kr), 希ガス
Element 37: ルビジウム (Rb), アルカリ金属
Element 38: ストロンチウム (Sr), アルカリ土類金属
Element 39: イットリウム (Y), 遷移金属
Element 40: ジルコニウム (Zr), 遷移金属
Element 41: ニオブ (Nb), 遷移金属
Element 42: モリブデン (Mo), 遷移金属
Element 43: テクネチウム (Tc), 遷移金属
Element 44: ルテニウム (Ru), 遷移金属
Element 45: ロジウム (Rh), 遷移金属
Element 46: パラジウム (Pd), 遷移金属
Element 47: 銀 (Ag), 遷移金属
Element 48: カドミウム (Cd), 卑金属
Element 49: インジウム (In), 卑金属
Element 50: スズ (Sn), 卑金属
Element 51: アンチモン (Sb), 金属
Element 52: テルル (Te), 金属
Element 53: ヨウ素 (I), ハロゲン
Element 54: キセノン (Xe), 希ガス
Element 55: セシウム (Cs), アルカリ金属
Element 56: バリウム (Ba), アルカリ土類金属
Element 57: ランタン (La), ランタノイド
Element 58: セリウム (Ce), ランタノイド
Element 59: プラセオジム (Pr), ランタノイド
Element 60: ネオジム (Nd), ランタノイド
Element 61: プロメチウム (Pm), ランタノイド
Element 62: サマリウム (Sm), ランタノイド
Element 63: ユウロピウム (Eu), ランタノイド
Element 64: ガドリニウム (Gd), ランタノイド
Element 65: テルビウム (Tb), ランタノイド
Element 66: ジスプロシウム (Dy), ランタノイド
Element 67: ホルミウム (Ho), ランタノイド
Element 68: エルビウム (Er), ランタノイド
Element 69: ツリウム (Tm), ランタノイド
Element 70: イッテルビウム (Yb), ランタノイド
Element 71: ルテチウム (Lu), ランタノイド
Element 72: ハフニウム (Hf), 遷移金属
Element 73: タンタル (Ta), 遷移金属
Element 74: タングステン (W), 遷移金属
Element 75: レニウム (Re), 遷移金属
Element 76: オスミウム (Os), 遷移金属
Element 77: イリジウム (Ir), 遷移金属
Element 78: 白金 (Pt), 遷移金属
Element 79: 金 (Au), 遷移金属
Element 80: 水銀 (Hg), 卑金属
Element 81: タリウム (Tl), 卑金属
Element 82: 鉛 (Pb), 卑金属
Element 83: ビスマス (Bi), 卑金属
Element 84: ポロニウム (Po), 金属
Element 85: アスタチン (At), ハロゲン
Element 86: ラドン (Rn), 希ガス
Element 87: フランシウム (Fr), アルカリ金属
Element 88: ラジウム (Ra), アルカリ土類金属
Element 89: アクチニウム (Ac), アクチノイド
Element 90: トリウム (Th), アクチノイド
Element 91: プロトアクチニウム (Pa), アクチノイド
Element 92: ウラン (U), アクチノイド
Element 93: ネプツニウム (Np), アクチノイド
Element 94: プルトニウム (Pu), アクチノイド
Element 95: アメリシウム (Am), アクチノイド
Element 96: キュリウム (Cm), アクチノイド
Element 97: バークリウム (Bk), アクチノイド
Element 98: カリホルニウム (Cf), アクチノイド
Element 99: アインスタイニウム (Es), アクチノイド
Element 100: フェルミウム (Fm), アクチノイド
Element 101: メンデレビウム (Md), アクチノイド
Element 102: ノーベリウム (No), アクチノイド
Element 103: ローレンシウム (Lr), アクチノイド
Element 104: ラザホージウム (Rf), 遷移金属
Element 105: ドブニウム (Db), 遷移金属
Element 106: シーボーギウム (Sg), 遷移金属
Element 107: ボーリウム (Bh), 遷移金属
Element 108: ハッシウム (Hs), 遷移金属
Element 109: マイトネリウム (Mt), 遷移金属
Element 110: ダームスタチウム (Ds), 遷移金属
Element 111: レントゲニウム (Rg), 遷移金属
Element 112: コペルニシウム (Cn), 卑金属
Element 113: ウンウントリウム (Uut), 卑金属
Element 114: フレロビウム (Fl), 卑金属
Element 115: ウンウンペンチウム (Uup), 卑金属
Element 116: リバモリウム (Lv), 卑金属
Element 117: ウンウンセプチウム (Uus), ハロゲン
Element 118: ウンウンオクチウム (Uuo), 希ガス
Mercury has a rhombohedral crystal structure
80Hg
外見
銀白色
Pouring liquid mercury bionerd.jpg
一般特性
名称, 記号, 番号 水銀, Hg, 80
分類 卑金属
, 周期, ブロック 12, 6, d
原子量 200.59(2) g·mol-1
電子配置 [Xe] 4f14 5d10 6s2
電子殻 2, 8, 18, 32, 18, 2(画像
物理特性
液体
融点での液体密度 13.534 g·cm-3
融点 234.32 K, -38.83 °C, -37.89 °F
沸点 629.88 K, 356.73 °C, 674.11 °F
臨界点 1750 K, 172.00 MPa
融解熱 2.29 kJ·mol-1
蒸発熱 59.11 kJ·mol-1
熱容量 (25 °C) 27.983 J·mol-1·K-1
蒸気圧
圧力(Pa) 1 10 100 1 k 10 k 100 k
温度 (K) 315 350 393 449 523 629
原子特性
酸化数 4, 2 (Hg2+), 1 (Hg22+)
(塩基性酸化物)
電気陰性度 2.00 (ポーリングの値)
イオン化エネルギー 第1: 1007.1 kJ·mol-1
第2: 1810 kJ·mol-1
第3: 3300 kJ·mol-1
原子半径 151 pm
共有結合半径 132±5 pm
ファンデルワールス半径 155 pm
その他
結晶構造 菱面体晶系
磁性 反磁性
電気抵抗率 (25 °C) 961nΩ·m
熱伝導率 (300 K) 8.30 W·m-1·K-1
熱膨張率 (25 °C) 60.4 µm·m-1·K-1
音の伝わる速さ (液体, 20 °C) 1451.4 m/s
CAS登録番号 7439-97-6
最安定同位体
詳細は水銀の同位体を参照
同位体 NA 半減期 DM DE (MeV) DP
194Hg syn 444 y ε 0.040 194Au
195Hg syn 9.9 h ε 1.510 195Au
196Hg 0.15 % 中性子116個で安定
197Hg syn 64.14 h ε 0.600 197Au
198Hg 9.97 % 中性子118個で安定
199Hg 16.87 % 中性子119個で安定
200Hg 23.1 % 中性子120個で安定
201Hg 13.18 % 中性子121個で安定
202Hg 29.86 % 中性子122個で安定
203Hg syn 46.612 d β- 0.492 203Tl
204Hg 6.87 % 中性子124個で安定

水銀(すいぎん、: mercury: hydrargyrum)は原子番号80の元素元素記号Hgとも書く。第12族元素に属す。常温常圧凝固しない唯一の金属元素[1]で、のような白い光沢を放つことからこの名がついている。

硫化物である辰砂 (HgS) 及び単体である自然水銀 (Hg) として主に産出する。

名称[編集]

元素記号の Hg は、古典ギリシア語: ὕδράργυρος (hydrargyros ; < ὕδωρ 「水」 + άργυρος 「銀」)に由来する ラテン語: hydrargyrum の略。また、古くは ラテン語: argentum vivum (「生きている銀」、流動する点を「生きている」と表現した)ともいい、この言い方は 英語: quicksilver(古語。なお形容詞 quick は古くは「生きている」の意味であった[2])、ドイツ語: Quecksilber などへ翻訳借用された。

古来の日本語(大和言葉)では「みずかね」と呼ぶ。 漢字では古来「」(拼音: gǒng)の字をあて、標準中国語(普通話)でもこの表記が正式である(中国では「水銀」は通称として用いられる)。

英語名 mercury は14世紀から用例があり[3]占星術錬金術の分野で最初用いられたものである[3]。 これは、天球上をせわしなく移動する水星を流動する水銀に結びつけたもの[3]とも、また、液体で金属であるという流動性が、神々の使者として天地を自由に駆け巡ったヘルメースギリシア神話の神で、ローマ神話メルクリウスMercurius)と同一視される)の性格と関連づけられたためともいわれる[4]

性質[編集]

水銀は、各種の金属と混和し、アマルガムと呼ばれる合金をつくる。これは水銀が大半を占める場合には液体、水銀の量が少なければ固体となる。白金マンガンコバルトニッケルタングステンとは合金を形成しないので、水銀の保存には鉄の容器が用いられる。

生物に対して毒性が強いため、使用が控えられている金属である。

また、その特異な性質から様々な科学者の興味の対象となり、多くの現象の発見にかかわっている。

  • トリチェリの実験では水銀柱が用いられ、圧力単位トル」(Torr、別名:水銀柱ミリメートル mmHg)の基準となった。
  • 超伝導は水銀の冷却中に初めて発見された現象である(そのため、かつては超伝導材として使用されていたが、現在ではほとんど使われていない)。
  • 電気化学に重要な発展をもたらしたポーラログラフィーでは、水銀が電極として使用される。
  • 電気抵抗の単位であるオームの由来となったのは、水銀の抵抗値であった(現在の定義には用いられていない)。
  • 酸素の発見は水銀と酸素がある温度以下では酸化水銀に、ある温度以上では単体に分離する性質によるものである。

同位体[編集]

7種の安定同位体が存在する。同位体は、中性子の数が異なることから、僅かに質量が異なる。従って、同じ元素であっても物理学的な特性に違いを持つ。この特性を利用し、環境中に蓄積された水銀の同位対比を精密に測定する事で、水銀の循環を解明することが可能になる[5]

毒性[編集]

古代においては、辰砂(主成分は硫化水銀:鮮血色をしている)などの水銀化合物は、その特性や外見から不死のとして珍重されてきた。特に中国皇帝に愛用されており、不老不死の薬、「仙丹」の原料と信じられていた(錬丹術)。それが日本に伝わり飛鳥時代の持統天皇も若さと美しさを保つために飲んでいたとされる。しかし現代から見ればまさにを飲んでいるに等しく、始皇帝を始め多くの権力者が命を落としたといわれている。中世以降、水銀は毒として認知されるようになった。

世界中において有機水銀はかつて農薬として広く使われ、1970年代イラクでは、メチル水銀で消毒した小麦の種を食用に流用したパンによって有機水銀中毒で400人以上が死亡する事件がおきた。そして、その毒性から現在は使用が禁止され、代わりに無機水銀などが使われるようになった。さらに、水銀化合物自体の使用が環境汚染につながるとして忌避されるようにもなった。

2001年アメリカ合衆国では「乳児の際に受けた予防接種中のチメロサール(エチル水銀チオサリチル酸ナトリウム・ワクチンの防腐剤として使用される)によって自閉症になった」として製薬会社に対する訴訟が発生した。三種混合ワクチン日本脳炎ワクチン、インフルエンザワクチン、B型肝炎ワクチンなどの保存剤としてチメロサールが使われていたためである。そのためチメロサールを使わないか低濃度のものに替えるなど規制が強化されたが、その後の大規模調査で自閉症との関連は否定され[6]、関連を示唆した発端の論文は科学的不正があったとして撤回されている。

有機水銀は無機水銀に比べ毒性が非常に強い。特にメチル水銀の中枢神経系)に対する毒性は強力で、日本で起きた水俣病熊本県八代海)や阿賀野川流域(新潟県)でおきた工場排水に起因する有機水銀中毒(第二水俣病)の原因物質である。

地球上においては地殻などに水銀が比較的豊富に存在する。これら自然界に存在する水銀は水系環境において非酵素的反応や微生物の作用によって有機水銀に変化し、食物連鎖を通じて、大形魚類や、深海魚、海洋動物に蓄積される。日本の厚生労働省キンメダイカジキマグロなどの魚類、クジライルカなどの海棲哺乳類に含まれる水銀が胎児の発育に影響を及ぼす恐れがあるとして、妊娠中かその可能性のある女性は、魚介類の摂取量や回数を制限するように注意を喚起している[7]

栄養摂取に占める魚介類の割合が多い日本では、メチル水銀の摂取量が他国と比較して高いことが知られている。メチル水銀の摂取量の地域的特徴は、マグロ類の消費傾向とよく一致し、関東地方などを中心とする東日本で高く、中国地方から九州北部にかけて比較的低くなっている。一方で、魚介類は栄養的にも優れた食品であり、バランスの取れた食生活をしている限りは、通常は微量の汚染物質による健康影響を心配する必要はあまりない。一方、発育途中にある胎児の神経系は、メチル水銀の影響を最も受けやすいと考えられる。魚介類にはある種の不飽和脂肪酸など、胎児の発育などにも有効な成分も多く含まれており、魚介類中に含まれる微量のメチル水銀が、胎児の発達にどれほどの影響を及ぼしているかは、研究者によっても見解が分かれるところである。欧米の政府機関は、基準を設けて、マグロカジキなどの摂取制限を行っている[8]。特に妊婦や妊娠する可能性のある女性は、メチル水銀を多く含む大形食魚やイルカキンメダイなどの魚介類などを、基準より食べ過ぎないよう注意するとよい[9]。なお、マグロなどの魚介類はセレンを含んでおり、これがメチル水銀の毒性を軽減させているとの可能性も指摘されているが、詳細は不明である。

自然界では無機水銀及び有機水銀を処理して、金属状態の水銀に変化させるが存在する。この菌は通称水銀耐性菌と呼ばれ、水俣病の発生した地域の土壌から単離された。水銀耐性菌において無機水銀及び有機水銀を金属水銀に代謝するのは、この菌の産生するタンパク質によるものであることが遺伝子工学的な解析により判明しており、その担当遺伝子の解析も行われている(メタロチオネインも参考のこと)。環境汚染の浄化技術として、いわゆるバイオレメディエーションへの応用も行われている。

体温計に使われている水銀は金属水銀なので安全だと言われている。金属水銀は間違って飲み込んだとしても、消化管からはほとんど吸収されないので、急性中毒を起こすことはない(ただし、一部が腸内細菌叢により酸化されたり、有機水銀に転換されて吸収される余地が示唆されている)。しかし、気化した場合にはから吸収されやすく、体内に吸収された場合にはヘモグロビン血清アルブミン結合し毒性を示す。このため水銀を含有する物(蛍光灯体温計血圧計朱肉など)を焼却することは危険である。

許容摂取量[編集]

許容摂取量は、国際専門会議 (JECFA) において、胎児を保護するため、暫定的耐容量 (PTWI) 1.6 μg/kgと定められており[10]諸外国[11]、においても、妊婦等への摂食制限の啓蒙や規制強化が行われている[12][13]

底質における水銀の蓄積[編集]

水銀の外部環境への排出抑制は取組が進んでいるが、過去に排出された水銀や現在でも水銀を含む農薬が許可されている国域では河口や湖などの底質に蓄積されていることがある。日本国については産業技術総合研究所で全国の河川の底質を分析して日本の地球化学図としてそのデーターを公開している[14]。また環境省は基準値以上の水銀化合物を含む底質を除去するように政令で通達している[15]

水銀の基準[編集]

生産[編集]

水銀の鉱山としては、スペインシウダ・レアルにある国営アルマデン鉱山が有名。古代ローマ紀元前372年からイスラム帝国時代、そして2004年7月の生産停止に至るまで辰砂及び自然水銀を産出していた。日本では、佐世保市相浦の佐世保層群相浦層、北海道留辺蘂町にあったイトムカ鉱山(自然水銀の産出が多いことでも有名)や古代から産出記録がある丹生鉱山が知られている。

水銀地金は液体であるため、アマルガムを生じさせない素材の容器に入れて流通させる。国際市場では34.5kgの鉄製フラスコボンベと呼ばれる事もある)に充填して流通する事が慣習となっている。ただし、国内向けや小口向けでは他の試薬同様、ガラス製や樹脂製の瓶に入れて出荷される事が多い。

水銀鉱石[編集]

水銀鉱石を構成する鉱石鉱物には次のようなものがある。

商業的には辰砂及び自然水銀が主要な鉱石となっている。

用途[編集]

産業用、研究用[編集]

医療用など[編集]

  • 単体の水銀は熱膨張性の良さと、温度に対する膨張係数が線形に近いことから体温計に用いられる。現在ではデジタル式に圧されて廃れつつある。
  • 血圧計では、水銀柱を利用して圧を読みとるものが伝統的であり、現在でも医療現場や医療教育で広く使われている。しかし、現在は都立病院などで電子式の血圧計が普及してきている(医療用の電子式血圧計ならば聴診法にも対応している)[18]。ちなみに、血圧の単位は、国際単位系の例外として、mmHg(水銀柱ミリメートル)を用いるのが標準となっている。
  • スズなどとのアマルガムは、歯科治療において歯を削った後の詰め物として一般に用いられていた時期がある。これはアマルガム修復と呼ばれる手法で、該当金属粉末と水銀を混合した直後はアマルガム化が進んでいないためにシャーベット状であり、アマルガムが形成されて全体が固化するまでにしばらく時間がかかることを利用していた。
  • 国内において、かつては消毒薬マーキュロクロム (C20H8Br2HgNa2O6) の材料として使用されていた。現在はほとんど使われていない。
  • 硫化物辰砂と呼ばれ、催眠、鎮静効果のある生薬として漢方の処方に用いられることがある。
  • 密かに堕胎薬としても使われた(無論極めて危険である)[19]
  • チメロサール、ワクチンの防腐剤として使用される[20]

その他の日用品など[編集]

  • 蛍光灯水銀灯などでは、水銀蒸気が発光体として使用されている。
  • 辰砂朱色顔料としても用いられる。ただし、そのまま用いるケースは稀となり、金属水銀から工業的に製造された硫化水銀(銀朱)が用いられるようになった。この銀朱は、代替品が見つからないので、銀朱を用いた絵画や工芸品などの修繕に使用されている。
  • かつては電池乾電池水銀電池など)の亜鉛と混合しアマルガム化することによって負極の化学反応抑制用として使用された。現在国内では酸化銀電池、アルカリボタン電池等に使用されているのみである。なお、日本でマンガン電池の水銀が0使用になったのは1991年、アルカリ電池では1992年であり、古い電池の破棄には注意を要する。(各市町村の処分方法に従うこと)
  • 鏡が銅などの金属を磨いて作られていた時代には、鏡の表面にアマルガムを形成させることで鏡研ぎの仕上げとしていた。

分析法[編集]

水銀は常温で容易に気化するため、分析法は還元気化原子吸光法が主である。測定機器としては原子吸光分析装置のバーナヘッド部を石英セルに置き換えるほか、水銀測定専用の装置が市販されている。有機水銀の場合は試料を分解せず溶媒抽出後、ガスクロマトグラフィー分離電子捕獲検出器質量分析装置で検出する場合もある。

総水銀の分析手順は概ね次のようなものである。詳細は成書を参照されたい。

  1. 試料を強酸で分解する。硝酸-過塩素酸、硝酸-過塩素酸-硫酸、硝酸-硫酸の系がよく用いられる。
  2. さらにペルオキソ二硫酸カリウム過マンガン酸カリウム等で有機水銀と残余の有機物を完全に酸化分解する。
  3. 分解液を還元気化装置の容器に採り、還元剤を加え通気する。
  4. 水銀イオン水銀原子に還元され、気相中にパージされてくる。
  5. 水銀原子の波長253.7 nmにおける吸光度測定する。

化合物[編集]

水銀(IV)の化合物は存在が予言されるにとどまっていたが、2007年に初めて HgF4 の合成が報告された。固体 Ar または Ne マトリクス中の極低温下で水銀と F2 との反応により合成された[21]

脚注[編集]

[ヘルプ]
  1. ^ 常温常圧で液体状態をとりうる金属としては他にガリウム(融点30℃)、ルビジウム(融点39℃)、セシウム(融点28℃)、フランシウム(融点27℃(理論推定))などがあるが、融点が常温より十分に低いものは現在発見されている金属元素の中では水銀が唯一である。
  2. ^ Online Etymology Dictionary
  3. ^ a b c Online Etymology Dictionary
  4. ^ 桜井 弘 『元素111の新知識』 講談社1998年、326~327頁。ISBN 4-06-257192-7 
  5. ^ 武内章記、柴田康行、田中敦「水銀同位体生物地球化学」、『環境化学』第19巻第1号、日本環境化学会、2009年3月17日、 1-11頁、 doi:10.5985/jec.19.1NAID 10024803660
  6. ^ メチル水銀ばく露による健康被害に関する国際的レビュー (PDF) 有村公良
  7. ^ 厚生労働省・魚介類等に含まれる水銀について
  8. ^ 水銀 渡辺和男氏(浜松医大)
  9. ^ 水俣病からメチル水銀中毒症へ 熊本大学
  10. ^ Opinion of the CONTAM Panel related to mercury and methylmercury in food JECFA
  11. ^ Mercury Levels in Commercial Fish and Shellfish アメリカ合衆国 FDA
  12. ^ 妊婦への魚介類の摂食と水銀に関する注意事項 日本国 厚生労働省
  13. ^ FDA ANNOUNCES ADVISORY ON METHYL MERCURY IN FISH アメリカ合衆国 FDA
  14. ^ 日本の地球化学図
  15. ^ 法令・告示・通達>底質の暫定除去基準について 日本国 環境省
  16. ^ 世界の水銀汚染問題(世界の水銀汚染研究の現状)
  17. ^ 東大寺盧舎那仏像(奈良の大仏)の金めっきは金アマルガムを大仏に塗った後、加熱して水銀を蒸発させることにより行われた。一説には、この際起こった水銀汚染が平城京から長岡京への遷都の契機となったという。しかし2013年東大大気海洋研究所が現地で当時の土壌を採取調査をしたところ、現代の環境基準よりはるかに低かったという。(朝日新聞デジタル版2013年6月1日0時24分
  18. ^ 水銀の処理等に関する検討会 とりまとめ 東京都 2012年2月
  19. ^ 川柳に「水銀(みずかね)で心の曇りを研いでおき」などと詠まれている。
  20. ^ メロサールとワクチンについて 横浜市感染症情報センター
  21. ^ Wang, Xuefang; Andrews, Lester; Riedel, Sebastian; Kaupp, Martin (2007). “Mercury Is a Transition Metal: The First Experimental Evidence for HgF4”. Angewandte Chemie International Edition 46 (44): 8371–8375. doi:10.1002/anie.200703710. ISSN 14337851. 

関連項目[編集]

外部リンク[編集]