標準得点
標準得点(ひょうじゅんとくてん、standard score)とは、平均値や標準偏差などの集団基準を用い、母集団の中における個人の相対的な位置づけが分かるように変換した得点のこと。標準得点に変換することを標準化と呼ぶ[1]。
Z得点[編集]
Z得点(z値、z-score、z-value)とは、平均が0、標準偏差 (SD) が1になるように変換した得点。
母集団の平均と標準偏差が既知の場合、変数 x のZ得点 z は以下のように計算される[2]。
ここで:
偏差値[編集]
詳細は「偏差値」を参照
偏差値とは、平均が50、標準偏差 (SD) が10となるように変換した得点。T得点(T値、T-score)も同義である。教育分野でしばしば用いられる。
偏差IQ[編集]
正規分布上で平均が100、標準偏差 (SD) が15(ウェクスラー式の場合)または16(ビネー式の場合)となるように変換した得点。
正規標準分布、偏差値、偏差IQの関係[編集]

パーセンタイル順位[編集]
詳細は「分位数」を参照
平均、標準偏差を変換してもその比率は変わらないので、正規分布上で特定の得点間に含まれる割合は決まっている。
例えば偏差IQは、全体の約68.26%の人が85~115の得点をとり、約95.44%の人が70~130の得点をとる。
この割合を基に得点の低い所から順位をつけたものがパーセンタイル順位(下図は偏差IQの場合)。
例えば、IQ85とは、母集団の下から16パーセンタイルの順位にいることを意味する。
脚注[編集]
- ^ “使われている統計技法”. 株式会社 日本経営協会総合研究所. 2022年2月2日閲覧。
- ^ “使われている統計技法”. 株式会社 日本経営協会総合研究所. 2022年2月2日閲覧。