楕円型偏微分方程式

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動先: 案内検索

数学の分野における楕円型偏微分方程式(だえんがたへんびぶんほうていしき、: elliptic partial differential equation)とは、一般的な二階の偏微分方程式

で次の条件を満たすもののことを言う:

(ここで、暗に を意味している)。

円錐断面二次形式を分類する際に判別式 を利用するように、二階の偏微分方程式に対しても、ある与えられた点において、同様の分類が行われる。しかし、偏微分方程式に対する判別式はそれとは異なり、 で与えられることが慣例となっている(詳細については「二階の方程式(英語版)」を参照されたい)。前述の形式は、平面上の楕円の方程式

と同様のものである。この方程式は( である場合には)

および へと変わる。これは、標準的な楕円の方程式 に類似している。

一般的に、n 個の独立変数 x1, x2 , ..., xn が与えられた際に、二階の線型偏微分方程式は次の形で記述される:

,

ここで、L は楕円型作用素である。

例えば、三次元 (x,y,z) においては

が得られる。ここで、u が完全分離可能英語版(すなわち、u(x,y,z)=u(x)u(y)u(z))である場合には、

が得られる。

これは、楕円体の方程式 と対応している。 いちばん簡単な例は,

のようなラプラス方程式である。

関連項目[編集]