仮説検定

出典: フリー百科事典『ウィキペディア(Wikipedia)』
帰無仮説から転送)
移動: 案内検索

仮説検定(かせつけんてい、: hypothesis testing)、統計的仮説検定(statistical hypothesis testing)[1]とは、ある仮説が正しいといってよいかを統計学的に判断するための方法を言う。

(統計的)仮説検定の方法論は、ネイマン=ピアソン流の頻度主義統計学に基づくものと、ベイズ主義統計学に基づくものとの二つに大きく分けられる[2]。ただし「仮説検定」という場合、前者だけを指すことがある。本項でも前者のみを説明する。

統計的仮説検定の手順[編集]

統計的仮説検定においては、仮説が正しいと仮定した上で、それに従う母集団から、実際に観察された標本が抽出される確率を求め、その値により判断を行う。その確率が十分に(予め決めておいた値より)小さければ、その仮説を棄却する(すなわち仮説は成り立ちそうもないと判断する)。

統計的仮説検定は次のような手順で実施する。

仮説の設定[編集]

仮説が正しいと仮定した場合にその標本が観察される確率を算出できるように、仮説を統計学的に表現する。

検定は下記の二者択一となり、帰無仮説[3]を棄却できるかどうかを調べることになる。

仮説の設定例[編集]

薬の試験(薬の「効果を主張できるか」を調べる)を例にとれば、帰無仮説は、「効果を主張できない」に当たり、下記のように立てる。

「薬に対する反応の平均プラセボに対する反応の平均と等しい。」(どちらの反応も正規分布に従うがその標準偏差は両者で等しく、平均を問題としている。)

なお、対立仮説は、「効果を主張できる」に当たる。

上の例では「薬に対する反応の平均がプラセボに対するそれと異なる」ということになる

統計量の算出[編集]

標本データから、仮説に関係した情報を要約する検定統計量を計算する。下記のように十分性を持つ統計量十分統計量)が存在すればそれを計算する。単純二仮説の場合は、尤度比が仮説検定の十分統計量となる。

母数に対応する十分統計量は、母集団の確率分布指数型分布族である場合にのみ存在する[要出典]。例で言えば、指数型分布族で、二つの標本平均の差m1 − m2は十分統計量である。

統計量の確率分布[編集]

帰無仮説に基づき、検定統計量の確率分布を明らかにする。

例では、標本平均の差は正規分布に従い、その標準偏差は母標準偏差に \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} をかけたもの(ここで n1n2 は各標本のサイズ)である。

危険域の設定[編集]

可能な全ての値の集合の中で、帰無仮説に反する極端な範囲(分布関数をグラフ表示した場合には、裾に当たる部分)を選ぶ。これは検定統計量危険域(Critical region)と呼ばれる。帰無仮説が正しい場合に検定統計量が危険域内に入る確率を検定の危険率有意水準あるいは検定のサイズともいい、ふつうαと表す)と呼ぶ。危険率として具体的には0.05(5%)、0.01(1%)などを用いることが多い。

帰無仮説が例のように「平均が等しい」と主張するタイプであれば、分布関数の裾として左右両側を用いる(両側検定)。また「・・・の方が平均が大きい(小さい)ということはない」と主張するタイプであれば、片側の裾だけを用いる(片側検定)。検定の種類によっては両側検定または片側検定のみということもある。

判定[編集]

データから算出した検定統計量が危険域内にあるかどうかを判定する。

通常は統計量が仮定した分布の中で、算出した検定統計量と同じかそれよりも極端な(仮説に反する)値となる確率(これをp値という)を数表などにより求め、これとαとを比較し、p < αならば危険域の内部にあると判断する。 検定統計量が危険域内にあれば、結論は

  • 帰無仮説は正しくない。したがって棄却する(これから危険域のことを棄却域Rejection regionともいい、それ以外の範囲は採択域Acceptance regionという)

か、さもなくば

  • α以下の確率しかない事象が起こった

のいずれかになる。 この場合をα水準で統計学的に有意であるという。例では「薬に対して観察された反応はα水準で統計学的に有意である」といえる。分かりやすくいえば、「帰無仮説の下でこのようなことは偶然に起こりそうもないが、ごく小さい確率αで起こり得る」ということである。

一方、検定統計量が危険域の外側にあれば、

  • 帰無仮説を棄却するに足る証拠はないというのがただ一つの結論となる。

統計学の目的は(当然であるが)科学的な真理を明らかにすることではなく、数学的な誤謬をできるだけ減らすことにある。

種類[編集]

例のように、母集団の分布として正規分布を、あるいは比較する2群間の等分散(標準偏差が等しい)を仮定する(母数=パラメータを仮定する)検定法をパラメトリックParametric、それらを仮定せず一般の分布に適用できる検定法をノン・パラメトリックNon-parametricな検定と呼ぶ。具体的な方法の例を挙げる。

パラメトリックな検定手法[編集]

ノン・パラメトリックな検定手法[編集]

検定の目的からは、母数の有意性の検定、適合度検定(特定の母集団から抽出されたものか)、均一性検定(2標本が同一母集団によるものか:上の例)、独立性検定(2標本が独立か)などに分けられる。

脚注[編集]

  1. ^ 単に検定法と呼ばれることもある。
  2. ^ 村尾(2014)
  3. ^ 棄却(すなわち不採択)できるかを調べるものなので、帰無仮説と呼ばれる。
  4. ^ 帰無仮説に対立するので、対立仮説と呼ばれる。

関連項目[編集]

参考文献[編集]