太古代

出典: フリー百科事典『ウィキペディア(Wikipedia)』
始生代から転送)
ナビゲーションに移動 検索に移動
-4500 —
-4000 —
-3500 —
-3000 —
-2500 —
-2000 —
-1500 —
-1000 —
-500 —
0 —
単位百万年

太古代(たいこだい、Archean eon)[2][3]とは、地質時代の分類のひとつ。40億年前(または38億年前)から25億年前までの間を指す。最初の生命が誕生したと考えられる冥王代の次の時代であり、原核生物から真核単細胞生物が現れるまで[4]原生代の前の時代である。かつては、英語のArcheozoicの直訳から始生代(しせいだい)と呼ばれていた[3]

概要[編集]

地球上に地質学的証拠が見つからないために冥王代と呼ばれている累代に次ぐ時代。この時代から地殻を構成する岩石が見つかりはじめる。まとまった岩石として最も古いのはカナダのスレーブクラトンのアカスタ片麻岩で約40億年前に形成されたものだが、この岩体は形成後に激しい変成作用を受けているため、当時の地球表層の環境を解読するのは困難である[5]。当時の地表の状況が判明できる最古の地層はグリーンランド西部、イスア地域のイスア緑色岩帯英語版で、約38億年前のものである[6]。グリーンランド、カナダ楯状地バルト楯状地フェノスカンジア)、スコットランド、インド、ブラジル、オーストラリア、南部アフリカなどに残っている岩石のほとんどは変成作用を受けている。太古代の岩石は、現在の大陸地殻表面[7]の約4.5%を占めているが、地表に出ていない分まで含めると現在の約10%とされる[8]。この時代の陸地面積が現在より大幅に少なかった可能性が高いが、現在の大陸地殻を構成する岩石(花崗岩類)の大部分は当時すでに地表に存在しその後再溶解してリサイクルされたものであるという説もある[9]。 太古代の終わりの年代は、顕生代のような明瞭な地質学的事項がないため[10]、1981年に提唱された「25億年」が使われている[11]

地球表層の状況[編集]

西オーストラリアのシャーク湾で見られる現生のストロマトライト
ストロマトライトの化石、次の原生代の22-23億年前の地層から出たもの

地球は45-46億年前に誕生した[12]とされるが、当時は微惑星の衝突で解放されたエネルギーで地球内部は現在よりも高温となっていた。その後地球は徐々に冷却されている[13]。上述したように最初の岩石は約40億年前のものであるが、まとまった地層が世界各地で見つかるのは38億年前からである。38億年より前の地層が残っていないのは、現在よりも高温で活発なマントル対流のため、当時形成された地殻はすべてマントル内部にリサイクルされてしまったことが原因とされているが、39億年前頃に地球と月が同時に大規模な隕石衝突を受けたため(後期隕石重爆撃期)当時の地殻が破壊されてしまったという説もある[14]

なお堆積岩の分析結果から、30億年より前の海水温度は60-120℃という高温であったと推定されているが、29億年前以後は氷河堆積物が見つかるようになった[15]。太古代を通じて大気中には酸素はなく窒素二酸化炭素が主体であった。27億年前頃から大陸周辺にシアノバクテリアが形成した大規模なストロマトライトから酸素が放出され始めるが、その酸素は縞状鉄鉱床の形成に消費されてしまい大気中には移行していなかった[16]

35-38億年前の地表の状況[編集]

上記の38億年前のイスア地域の地層から、縞状鉄鉱床・炭酸塩岩・枕状溶岩・礫岩層が見られるが、前3者は当時海が存在したこと、礫岩層は陸地があったことを示している[17]。またイスア地域の地質構造は付加体としての特徴を示しており、当時既にプレートテクトニクスが機能していたと推定される[18]。35億年前の地層はアフリカ南部やオーストラリアのピルバラで見つかっている。ピルバラ地域のノースポールからは35億年前の枕状溶岩の上に載ったチャートの層から最古の生物痕跡と思われる化石が見つかっている[19]

27億年前の大陸生成[編集]

大陸の地殻を構成する花崗岩の組成は、その下のマントルの組成と大幅に異なっている。海洋地殻を形成する玄武岩はマントルの一部が溶解してできたものであるが、花崗岩は玄武岩が水の存在下で再度部分溶解して生まれる[20]。そのため、地球誕生当初の地表には大陸地殻は無く、その後年代が下がるにしたがって大陸が増えてきたとされる[21]。陸地の生成は一定のペースでコンスタントに進んだのではなく、段階的に起こったというデータがある。すなわち 世界各地の花崗岩の中のジルコン結晶の生成年代を分析した結果、27億年前と19億年前にジルコン生成のピークが認められ、この時期に集中的に陸地が生まれたとされる[22]。27億年前には大陸の周辺の浅い海に大規模なストロマトライトが形成されたと考えられている[23]

なお太古代はマントルの温度が現在よりも高かったため、マントルが部分溶解してできるマグマの成分も現在と異なっており、マグネシウム分が非常に多いコマチアイトなど現在のマグマでは見られない成分の火成岩が存在した[24]。また花崗岩も後世にみられない組成をもち、ナトリウム成分に富んだトーナル岩(tonalite)・トロニエム岩(trondhjemite)・花崗閃緑岩(granodiorite)からなり頭文字からTTGと呼ばれる。マントルの温度が高かったため、沈み込みプレート自体が比較的浅い地下で融解して大陸地殻に貫入したためと考えられている[25]

生物[編集]

系統樹による推計では、冥王代またはこの時代の初期に全生物の共通祖先が現れ、太古代には多様化が進んで古細菌真正細菌の門の多くが出そろったと考えられている[26]。35億年前の地層からは古細菌と真正細菌の活動の痕跡が発見されている[27]。後期には真核生物の祖先も現れたとされている。 上記の最古の生命化石が見つかったノースポールの地層は、35億年前の熱水活動が活発で温度の高い中央海嶺であったと推察されている。これは現在生きている生物の遺伝子配列の分析結果から得られた「地球生命の祖先は古細菌または真正細菌のなかで高温適性を有したもの」と調和的である[28]。27億年前ごろからシアノバクテリアが出現し広範囲に生息した[29]

分類[編集]

地質時代先カンブリア時代[30][31]
累代 [32] 基底年代
Mya[33]
顕生代 新生代 66
中生代 251.902

古生代 541
原生代 新原生代 エディアカラン 635
クライオジェニアン 720
トニアン 1000
中原生代 ステニアン 1200
エクタシアン 1400
カリミアン 1600
古原生代 スタテリアン 1800
オロシリアン 2050
リィアキアン 2300
シデリアン 2500
太古代(始生代) 新太古代 2800
中太古代 3200
古太古代 3600
原太古代 4000
冥王代 4600


太古代はさらに4つに分類される[34]

冥王代との境界の年代値は公式には決まっておらず、暫定的な値として40億年前が使われている。この時代は放射年代測定による年代値ではなく、国際標準層序年代(Global Standard Stratigraphic Age)による数値年代で定義されているため、年代数値に誤差は生じない[35]

原太古代 (Eoarchean)
太古代初期。40億年前(または38億年前)から36億年前。
古太古代 (Paleoarchean)
太古代前期。36億年前から32億年前。
中太古代 (Mesoarchean)
太古代中期。32億年前から28億年前。
新太古代 (Neoarchean)
太古代後期。28億年前から25億年前。

脚注[編集]

[ヘルプ]
  1. ^ 「始生代」の新名称、日本地質学会が2018年7月に改訂
  2. ^ 「地殻進化学」p33-34
  3. ^ a b 地質系統・年代の日本語記述ガイドライン 2018年7月改訂版”. 地質系統・年代の日本語記述ガイドライン. 日本地質学会 (2018年8月7日). 2018年9月30日閲覧。
  4. ^ 池谷・北里 (2004), p. 82.
  5. ^ 「地球進化論」p108
  6. ^ 川上・東條 (2009) p142
  7. ^ 大陸の面積には大陸棚を含む
  8. ^ 「地殻進化学」p32
  9. ^ 「地殻進化学」 p30-31
  10. ^ 顕生代での時代の判定は「地球上の広い範囲で同時に認められる生物化石の変遷」を用いている。
  11. ^ 「地殻進化学」p32
  12. ^ 「地球進化概論」小嶋稔ら 岩波書店 2013年 p42
  13. ^ 「最新 地球史が良くわかる本」p136
  14. ^ 「最新 地球史が良くわかる本」p132-136
  15. ^ 「地球環境46億年の大変動史」p78
  16. ^ 「最新 地球史が良くわかる本」p176-179
  17. ^ 「最新 地球史が良くわかる本」p142
  18. ^ 「地球進化論」 p111
  19. ^ 「生命と地球の歴史」 p70-73
  20. ^ 「地球環境46億年の大変動史」p76
  21. ^ 「地殻進化学」p31
  22. ^ 「地球進化論」p114-115
  23. ^ 「最新 地球史が良くわかる本」p170
  24. ^ 「最新 地球史が良くわかる本」p139
  25. ^ 「地殻進化学」p36
  26. ^ Battistuzzi FU, Hedges SB (February 2009). "A major clade of prokaryotes with ancient adaptations to life on land". Mol. Biol. Evol. 26 (2): 335–43.
  27. ^ Ueno Y, Yamada K, Yoshida N, Maruyama S & Isozaki Y (2006). “Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era”. Nature 440 (7083): 516–519.
  28. ^ 「生命と地球の歴史」p67-80
  29. ^ 「生命と地球の共進化」川上紳一 NHKブックス 2000年 p91
  30. ^ 基底年代の数値では、この表と本文中の記述では、異なる出典によるため違う場合もある。
  31. ^ 基底年代の更新履歴
  32. ^ 顕生代は省略、太古代は無し
  33. ^ 百万年前
  34. ^ International Stratigraphic Chart (ICS)”. 2011年11月20日閲覧。
  35. ^ 地質年代表における年代数値 - その意味すること”. 日本地質学会. 2011年11月20日閲覧。

参考文献[編集]

  • 川上紳一、東條文治 『最新地球史がよくわかる本』 秀和システム〈図解入門 -How-nual- Visual Guide Book〉、2009年11月、第2版。ISBN 978-4-7980-2435-6
  • 池谷仙之、北里洋 『地球生物学 - 地球と生命の進化 -』 東京大学出版会2004年2月ISBN 978-4-13-062711-5
  • 国土交通省地質・土質調査成果電子納品要領(案)付属資料
  • 「地殻進化学」 堀越叡 東京大学出版会 2010年
  • 「新装版地球惑星科学13 地球進化論」平朝彦・阿部進・川上紳一・清川昌一・有馬眞・田近英一・箕浦幸治 岩波書店 2011年
  • 「生命と地球の歴史」 丸山重徳・磯崎行雄 岩波新書543 1998年
  • 「地球環境46億年の大変動史」 田近英一 化学同人 2009年

関連項目[編集]

外部リンク[編集]

  • 仲田崇志 (2009年10月29日). “地質年代表”. きまぐれ生物学. 2011年2月14日閲覧。