壊変図式

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索

壊変図式(かいへんずしき、Decay scheme)とは放射壊変の推移とそれらの関係を図示したものである。

壊変図式には、一番上に初期状態の核種(元素記号とその左上に質量数、左下に陽子数)が書かれ、その付近に半減期が、更に崩壊モードが特殊な核種(電子捕獲など)はに崩壊モードが書かれている。上から階層的になっており、一番下が最終状態である。初期状態から最終状態への遷移は矢印によって表され、その矢印は放射線の種類およびエネルギー、崩壊後の遷移先である励起状態とその遷移確率が明記されている。その各励起状態を表す横線の左端にはスピンパリティが、右端には状態エネルギーが書かれているものもある。

放射性同位体の壊変図式[編集]

60Coの壊変図式

それらの関係は複雑に込み入っている事もあるので、まずは簡単な例から示そう: コバルト同位体であるコバルト60[1]の壊変図式を示す。60Coは電子を放出して崩壊し (ベータ崩壊)、半減期5.26年で励起状態60Niになり、その崩壊の過程で極めて短い時間の間に2回のガンマ崩壊を起こす。

壊変図式は直交座標系と考えると非常に便利である。縦軸がエネルギーを表しており、下から上へと上昇していく。横軸は陽子数を表しており、左から右へと増加していくと考えることが出来る。ガンマ線(縦の矢印)はガンマ崩壊時に放出されるガンマ線エネルギーを表しており、ベータ線(斜めの矢印)はベータ崩壊時に放出されるベータ線の最大エネルギーを表している。

ニッケルはコバルトの右側にあるが、ニッケルの陽子数は28であり、コバルトの27よりも1つ多い。これはベータ崩壊において、1つの中性子が1つの陽子に変化しその結果陽子数が1つ増えているわけである。陽電子を放出するベータ崩壊(詳細はβ+崩壊を参照)や、後述のアルファ崩壊においては斜めの矢印は右から左へと向い、これらの場合は陽子数は減少する。

壊変図式においてエネルギーは保存しており、放出された粒子がエネルギーを運び去る。この為、矢印は必ず(垂直または斜めに)上から下へと向かう。

198Auの壊変図式

ここで幾らか別の種類の壊変図式も見てみよう:198Au [2]は、天然の金(197Au)に中性子を照射することによって作る事ができる[3]198Auはベータ崩壊により2つの励起状態を経由するか、もしくは直接水銀の同位体である198Hgへと崩壊する。図において、水銀は金の右側にあるが、金の原子番号は79であり、水銀は80である。励起状態からは極めて短い時間(2.5および23ピコ秒。1ピコ秒は1兆分の1秒、すなわち10-12秒である)で最終状態へと崩壊する。

99mTcの壊変図式

励起状態の原子核は通常、極めて寿命が短く、崩壊はほとんどベータ崩壊の直後に起こるが(上記参照)、テクネチウムの励起状態は比較的長い寿命を持っている。このような原子核の事を核異性体(Nuclear isomer、または単にアイソマーという[4])。これはしばしば準安定状態と呼ばれる(準安定状態の英語表記meta stableの頭文字mを取って次のように表記される99mTc [5])。そのガンマ崩壊が起こるまでの平均寿命は6.01時間である[6]

210Poの壊変図式

ここで我々は、アルファ崩壊を取り上げることにしよう。マリ・キュリーによって発見されたポロニウムは、210の原子量を持つ。210Poは、ウラン系列に属し、その最後から2番目に位置し、それは安定な鉛の同位体へと半減期138日で崩壊する。殆ど全ての場合、崩壊は5.305MeVのアルファ粒子を放出して起こるが、0.001%の確率でα線のエネルギーが低いことがある。この場合、206Pbの励起状態へと崩壊してしまい、そこからガンマ崩壊によって安定状態へと崩壊する。

関連項目[編集]

参考文献[編集]

  1. ^ K.H.Lieser Einführung in die Kernchemie (1991) S.223, Abb. (7-22); ISBN 3-527-28329-3
  2. ^ K.H.Lieser, Nuclear and Radiochemistry (2001), p.61, Fig 5.12; ISBN 3-527-30317-0
  3. ^ 日本アイソトープ協会, アイソトープ手帳 第10版, p66, ISBN 978-4-89073-125-1
  4. ^ 物理学小事典,p1,ISBN 4-385-24016-7
  5. ^ H.Krieger, Grundlagen der Strahlungsphysik und des Strahlenschutzes (2007), S.117, Fig 3.15; ISBN 978-3-8351-0199-9
  6. ^ 日本アイソトープ協会, アイソトープ手帳 第10版, p38, ISBN 978-4-89073-125-1