リアプノフ指数

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索

リアプノフ指数(リアプノフしすう、: Lyapunov exponent)とは、力学系においてごく接近した軌道が離れていく度合いを表す量である。リャプノフ指数とも記される[1]

系の相空間上の2つの軌道について考える。2つの軌道上の時刻 t における点の距離をベクトル δ(t) として、初期状態 t = 0 には、これらの軌道は距離 δ(0) だけ離れているとする。δ(t) を近似的に次のように表す[2][3][4]

 \| \boldsymbol{\delta}(t) \| \approx \|  \boldsymbol{\delta}(0) \| e^{\lambda t}

ここで\| \cdot \|ユークリッドノルムを意味する。上式で λ > 0 の場合は軌道は離れていき、 λ < 0 の場合は軌道は近づいていく。よって、軌道が離れていく度合いは λ の値により決定される。この λ がリアプノフ指数である[3][4]。軌道がカオス的であるとき、上式のように軌道は指数関数的に離れていく[5][6]。すなわち、リアプノフ指数が正であることが軌道がカオス的であることの1つの定義とされる[7]

より詳細には、系の状態変数が k 個(k > 1)の場合、すなわち相空間が k 次元である場合は各次元ごとに固有のリアプノフ指数を持つ[8]。これらのリアプノフ指数の組をリアプノフスペクトラム: Lyapunov spectrum)と呼び[9]、そのうちの最大のリアプノフ指数を最大リアプノフ指数: maximal Lyapunov exponent, maximum Lyapunov exponent)と呼ぶ[10]。各々のリアプノフ指数を見れば正であったり負であったりするが、最大リアプノフ指数が正であれば、その系はカオスの特徴の1つである初期値鋭敏性を持つといえる[11][10]

1次元離散時間力学系のリアプノフ指数[編集]

まず、単純な1次元離散力学系の場合のリアプノフ指数について説明する。x \in \Rを系の状態変数、n \in \Nを離散時間としたとき(ここでは\Nは0を含む)、 写像 xn+1 = f(xn) のリアプノフ指数 λ は次のように定義される[12][5][13][14]

 \lambda = \lim_{n \to \infty}  \frac{1}{n} \sum_{i=0}^{n-1}  \ln | f'(x_i)|

ここで、ln は自然対数を意味する。上式は次のように導入される。

初期位置を x0 とする。さらに、x0 からの微小量 λ0ずれた点 x0 + λ0 を考える。リアプノフ指数では x0 から出発する軌道と x0 + λ0 から出発する軌道がどれだけ離れていくかを定義したい。ずれは時間発展とともに変化していくと考えられるので、時刻 n におけるずれを λn で表す。n = 1 でのずれは\delta_1=f(x_0+\delta_0) - f(x_0)となり、n = n でのずれも同様に、\delta_n=f^n(x_0+\delta_0) - f^n(x_0)と得られる。ここで、fn(x)は f(x)の n反復写像を表す。

本記事の冒頭で定義したように、λnn に指数関数的に比例するとして、

 | \delta_n | = | \delta_0 | e^{\lambda n}

と表す[6]。両辺の自然対数をとると、

 \lambda =\frac{1}{n} \ln \left | \frac{\delta_n}{\delta_0} \right \vert

が得られる。ただし、初期のずれ量 λ0 は微小量としたが、実際にはリアプノフ指数は初期のずれ量を無限小とした λ0 → 0 の極限値で定義される[15]。よって、上式は

 \lambda =\frac{1}{n} \ln \left | \lim_{\delta_0 \to 0} \frac{\delta_n}{\delta_0} \right \vert

となる。上式の絶対値の中身に注目すると、

\lim_{\delta_0 \to 0} \frac{\delta_n}{\delta_0}=\lim_{\delta_0 \to 0} \frac{f^n(x_0+\delta_0) - f^n(x_0)}{\delta_0}=(f^n)'(x_0)=\prod_{i=0}^{n-1} f'(x_i)

とできる。ここで(f n)'(x) は、fn(x) の微分を意味する。\prod総乗を意味し、最右辺は合成関数の微分の連鎖律により得ることができる[14]。よって、

 \lambda =\frac{1}{n} \ln \left | \prod_{i=0}^{n-1} f'(x_i) \right \vert =\frac{1}{n} 
\sum_{i=0}^{n-1} \left | \ln f'(x_i) \right \vert

となる。さらに上式において n → ∞ とした極限値が存在するとき、その極限値を初期値 x0 から出発する軌道のリアプノフ指数と呼ぶ[16][12]

 \lambda = \lim_{n \to \infty}  \frac{1}{n} \sum_{i=0}^{n-1}  \ln | f'(x_i)|

1968年に発表されたValery Oseledecの多重エルゴード定理により、n → ∞ の極限値が存在すること、ほとんどすべての初期値 x0λ は同じ値に収束することが証明されている[17]。対象とする力学系のアトラクターの吸引域内の初期値であれば、全ての初期値で同じ λ の値に収束する[18][12]

高次元力学系のリアプノフ指数[編集]

力学系が k 次元の相空間を持つ高次元力学系の場合、各方向に別々のリアプノフ指数が存在する。すなわち高次元力学系であれば、軌道のズレは、ある方向には離れていくが、別の方向では縮まっていく状況がありえる[1]。よって λ 個のリアプノフ指数を得ることができる。このような k 個のリアプノフ指数の組を、リアプノフスペクトラムと呼ぶ[19][20][注釈 1]

 \lambda_i = \{ \lambda_1, \lambda_2, \cdots , \lambda_k \}

リアプノフスペクトラムでは一般にλ1から値が大きい順に並べる[21][9]。最大値であるλ1 を、特に最大リアプノフ指数と呼ぶ[22]。記事冒頭で述べたように、相空間上の2つの軌道上の時刻 t における点の間の距離、すなわちズレを δ(t) とする。リアプノフスペクトラム λi は以下のように定義される[17][23][24]

\lambda_i=\lim_{t \to \infty}\frac{1}{t}\ln \alpha_i \quad (i=1,2,\cdots,k)

一般に λi は初期値 x(0) に依存する[17]。しかし1次元離散力学系の場合と同様に、ほとんどすべての初期位置 x0 から同一の λi を得ることができる[17][23]λi の定義式にある αi は、次式で定義される k × k 正定値行列 Λ固有値である[17][23]

\boldsymbol{\Lambda}=(\boldsymbol{M}^T\boldsymbol{M})^{\frac{1}{2t}}

さらに M は次の形式で表される δ(t) の解から得られる[25][23][24]

\boldsymbol{\delta}(t)=\boldsymbol{M}\boldsymbol{\delta}(0)

系が連続力学系の場合、 k 個の状態変数 {x1, x2, ..., xk}、常微分方程式 {f1, f2, ..., fk}から成る常微分方程式系\frac{d\boldsymbol{x}}{dt}=\boldsymbol{f}(t, \boldsymbol{x})が与えられる[26]f が線形近似可能な場合、fヤコビ行列を用いて、

\frac{d\boldsymbol{\delta}(t)}{dt}=\boldsymbol{J} \boldsymbol{\delta}(t)

と表すことができる[27][9]。また、系が離散力学系の場合、 k 個の状態変数、常差分方程式から成る差分方程式系 x(t + 1) = f(x(t))が与えられる[28]。同じく、差分方程式系 f線形近似可能な場合、fヤコビ行列を用いて、

\boldsymbol{\delta}(t+1)=\boldsymbol{J}\boldsymbol{\delta}(t)

と表すことができる[29][8]。ここに、J は以下に示すようなヤコビ行列による線形写像で、軌道 x(t) に依存し、すなわち初期値 x(0)、時間 t に依存して変化する[20][30]

\boldsymbol{J}= \begin{pmatrix}
 \cfrac{\partial f_1}{\partial x_1} & \cdots & \cfrac{\partial f_1}{\partial x_k} \\
 \vdots & \ddots & \vdots \\
 \cfrac{\partial f_k}{\partial x_1} & \cdots & \cfrac{\partial f_k}{\partial x_k} 
\end{pmatrix}

常微分方程式系の場合は、\frac{d\boldsymbol{\delta}}{dt}=\boldsymbol{J}(t) \boldsymbol{\delta}を解いて\boldsymbol{\delta}(t)=\boldsymbol{M}\boldsymbol{\delta}(0)を得ることで、上記の定義で出てきた正方行列 M を得ることができる[23][31]。差分方程式系の場合は、Jt 回繰り返し適用することで次のようなδ(t) と δ(0) の関係式で書き表すことできるので、MJn の 0 から t - 1 までの総乗として得ることができる[29][32]

\begin{align}
\boldsymbol{\delta}(t) &=\boldsymbol{J}(t-1)\boldsymbol{J}(t-2)\cdots\boldsymbol{J}(0)\boldsymbol{\delta}(0) \\
&=\boldsymbol{M}\boldsymbol{\delta}(0) \\
\end{align}

単位[編集]

対数の底に 2 を使用して計算した場合には、ビット/時間を単位として使用することがある。 これは、λ > 0 の場合、単位時間あたりλビットの情報が失われ、λ < 0 の場合λビットの情報が生成することに相当する[33]

基本特性[編集]

保存系の場合、相空間の全エネルギーは保存される。従って全リアプノフ指数の総和はゼロになる。散逸系ではリアプノフ指数の総和は負になる。

力学系が何らかの流れである場合、1つのリアプノフ指数は常にゼロとなる。つまり、流れの方向の固有ベクトルに対応する固有値から得られるリアプノフ指数がゼロになる。

リアプノフスペクトラムの重要性[編集]

リアプノフスペクトラムは、力学系のエントロピープロダクションやフラクタル次元の概算値を求めるのに使われる。特にリアプノフスペクトラムが分かれば、以下のように定義されるリアプノフ次元 D_{L} を計算できる[34]

 D_{L}= k + \sum_{i=1}^k \lambda_i/|\lambda_{k+1}|

ここで k は大きい方から k 個の指数の総和が負にならない最大個数である。リアプノフ次元は D_{L} は系の情報量次元の上限を表している[35]。さらに言えば、Pesin's theorem によれば、正のリアプノフ指数の総和はコルモゴロフ・シナイ・エントロピー(Kolmogorov-Sinai entropy)の近似値を与える。

最大リアプノフ指数の逆数を「リアプノフ時間; Lyapunov time」と呼ぶことがあり、e-folding time の特性を定義する。カオス的軌道ではリアプノフ時間は有限であり、正規の軌道では無限大となる。

脚注[編集]

注釈[編集]

  1. ^ リアプノフスペクトルと表記する場合もある[21]

出典[編集]

  1. ^ a b アリグッドほか 2012b, p. 1.
  2. ^ Strogatz 2015, pp. 349-350.
  3. ^ a b 合原 2011, p. 158.
  4. ^ a b 下條 1992, p. 86.
  5. ^ a b 高安 2001, p. 82.
  6. ^ a b Strogatz 2015, p. 400.
  7. ^ アリグッドほか 2012b, pp. 3-4.
  8. ^ a b 下條 1992, p. 91.
  9. ^ a b c 高安 2001, p. 83.
  10. ^ a b 船越 2008, p. 146.
  11. ^ 金子、津田 1997, p. 47.
  12. ^ a b c Strogatz 2015, p. 401.
  13. ^ 合原 2011, p. 161.
  14. ^ a b 下條 1992, p. 87.
  15. ^ 船越 2008, p. 157.
  16. ^ アリグッドほか 2012a, pp. 117-118.
  17. ^ a b c d e 合原 2011, p. 165.
  18. ^ 船越 2008, p. 171.
  19. ^ 船越 2008, p. 181.
  20. ^ a b 合原 2011, p. 163.
  21. ^ a b 金子、津田 1997, p. 115.
  22. ^ 船越 2008, p. 168.
  23. ^ a b c d e 高安 2001, p. 84.
  24. ^ a b ベルジュほか 1992, p. 265.
  25. ^ 合原 2011, pp. 164-165.
  26. ^ 小室 2005, p. 17.
  27. ^ 合原 2011, p. 167.
  28. ^ 小室 2005, p. 22.
  29. ^ a b 合原 2011, p. 164.
  30. ^ 高安 2001, pp. 83-84.
  31. ^ ベルジュほか 1992, pp. 261-262.
  32. ^ アリグッドほか 2012b, p. 8.
  33. ^ Chaotic oscillators: theory and applications, Tomasz Kapitaniak,pp287
  34. ^ 合原 2011, p. 169.
  35. ^ J. Kaplan and J. Yorke Chaotic behavior of multidimensional difference equations In Peitgen, H. O. & Walther, H. O., editors, ``Functional Differential Equations and Approximation of Fixed Points Springer, New York (1987)

参考文献[編集]

  • Cvitanovi? P., Artuso R., Mainieri R. , Tanner G. and Vattay G.Chaos: Classical and Quantum Niels Bohr Institute, Copenhagen 2005
  • Freddy Christiansen and Hans Henrik Rugh (1997年). "Computing Lyapunov spectra with continuous Gram-Schmidt orthonormalization". Nonlinearity 10: 1063–1072. 
  • Govindan Rangarajan, Salman Habib, and Robert D. Ryne (1998年). "Lyapunov Exponents without Rescaling and Reorthogonalization". Physical Review Letters 80: 3747–3750. 
  • X. Zeng, R. Eykholt, and R. A. Pielke (1991年). "Estimating the Lyapunov-exponent spectrum from short time series of low precision". Physical Review Letters 66: 3229. 
  • K.T.アリグッド・T.D.サウアー・J.A.ヨーク、シュプリンガー・ジャパン(編)、津田一郎(監訳)、星野高志・阿部巨仁・黒田拓・松本和宏(訳)、2012、『カオス 第1巻 力学系入門』、丸善出版 ISBN 978-4-621-06223-4
  • K.T.アリグッド・T.D.サウアー・J.A.ヨーク、シュプリンガー・ジャパン(編)、津田一郎(監訳)、星野高志・阿部巨仁・黒田拓・松本和宏(訳)、2012、『カオス 第2巻 力学系入門』、丸善出版 ISBN 978-4-621-06279-1
  • 池口徹・山田泰司・小室元政、合原一幸(編)、2011、『カオス時系列解析の基礎と応用』初版第4刷、 産業図書 ISBN 978-4-7828-1010-1
  • Steven H. Strogatz、田中久陽・中尾裕也・千葉逸人(訳)、2015、『ストロガッツ 非線形ダイナミクスとカオス―数学的基礎から物理・生物・化学・工学への応用まで』、丸善出版 ISBN 978-4-621-08580-6
  • 下條隆嗣、1998、『カオス力学入門―古典力学からカオス力学へ』初版第4刷、 近代科学社〈シミュレーション物理学6〉 ISBN 4-7649-2005-0
  • 高安秀樹・本田勝也・佐野雅己・田崎睛明・村山和郎・伊藤敬祐、2001、『フラクタル科学』初版第11刷、 朝倉書店 ISBN 4-254-10063-9
  • 船越満明、2008、『カオス』初版、 朝倉書店〈シリーズ 非線形科学入門3〉 ISBN 978-4-254-11613-7
  • 金子邦彦・津田一郎、1997、『複雑系のカオス的シナリオ』初版第4刷、 朝倉書店〈複雑系双書1〉 ISBN 4-254-10514-2
  • ピエール・ベルジュ、イヴェ・ポモウ、クリスチャン・ビダル、相澤洋二(訳)、1992、『カオスの中の秩序―乱流の理解に向けて』初版、 産業図書 ISBN 4-7828-0068-1
  • 小室元政、2005、『基礎からの力学系―分岐解析からカオス的遍歴へ』新版、 サイエンス社 ISBN 4-7819-1118-8

関連項目[編集]

外部リンク[編集]