ニッケル

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索
コバルト ニッケル
-

Ni

Pd
Element 1: 水素 (H), 非金属
Element 2: ヘリウム (He), 希ガス
Element 3: リチウム (Li), アルカリ金属
Element 4: ベリリウム (Be), 卑金属
Element 5: ホウ素 (B), 金属
Element 6: 炭素 (C), 非金属
Element 7: 窒素 (N), 非金属
Element 8: 酸素 (O), 非金属
Element 9: フッ素 (F), ハロゲン
Element 10: ネオン (Ne), 希ガス
Element 11: ナトリウム (Na), アルカリ金属
Element 12: マグネシウム (Mg), 卑金属
Element 13: アルミニウム (Al), 卑金属
Element 14: ケイ素 (Si), 金属
Element 15: リン (P), 非金属
Element 16: 硫黄 (S), 非金属
Element 17: 塩素 (Cl), ハロゲン
Element 18: アルゴン (Ar), 希ガス
Element 19: カリウム (K), アルカリ金属
Element 20: カルシウム (Ca), アルカリ土類金属
Element 21: スカンジウム (Sc), 遷移金属
Element 22: チタン (Ti), 遷移金属
Element 23: バナジウム (V), 遷移金属
Element 24: クロム (Cr), 遷移金属
Element 25: マンガン (Mn), 遷移金属
Element 26: 鉄 (Fe), 遷移金属
Element 27: コバルト (Co), 遷移金属
Element 28: ニッケル (Ni), 遷移金属
Element 29: 銅 (Cu), 遷移金属
Element 30: 亜鉛 (Zn), 卑金属
Element 31: ガリウム (Ga), 卑金属
Element 32: ゲルマニウム (Ge), 金属
Element 33: ヒ素 (As), 金属
Element 34: セレン (Se), 非金属
Element 35: 臭素 (Br), ハロゲン
Element 36: クリプトン (Kr), 希ガス
Element 37: ルビジウム (Rb), アルカリ金属
Element 38: ストロンチウム (Sr), アルカリ土類金属
Element 39: イットリウム (Y), 遷移金属
Element 40: ジルコニウム (Zr), 遷移金属
Element 41: ニオブ (Nb), 遷移金属
Element 42: モリブデン (Mo), 遷移金属
Element 43: テクネチウム (Tc), 遷移金属
Element 44: ルテニウム (Ru), 遷移金属
Element 45: ロジウム (Rh), 遷移金属
Element 46: パラジウム (Pd), 遷移金属
Element 47: 銀 (Ag), 遷移金属
Element 48: カドミウム (Cd), 卑金属
Element 49: インジウム (In), 卑金属
Element 50: スズ (Sn), 卑金属
Element 51: アンチモン (Sb), 金属
Element 52: テルル (Te), 金属
Element 53: ヨウ素 (I), ハロゲン
Element 54: キセノン (Xe), 希ガス
Element 55: セシウム (Cs), アルカリ金属
Element 56: バリウム (Ba), アルカリ土類金属
Element 57: ランタン (La), ランタノイド
Element 58: セリウム (Ce), ランタノイド
Element 59: プラセオジム (Pr), ランタノイド
Element 60: ネオジム (Nd), ランタノイド
Element 61: プロメチウム (Pm), ランタノイド
Element 62: サマリウム (Sm), ランタノイド
Element 63: ユウロピウム (Eu), ランタノイド
Element 64: ガドリニウム (Gd), ランタノイド
Element 65: テルビウム (Tb), ランタノイド
Element 66: ジスプロシウム (Dy), ランタノイド
Element 67: ホルミウム (Ho), ランタノイド
Element 68: エルビウム (Er), ランタノイド
Element 69: ツリウム (Tm), ランタノイド
Element 70: イッテルビウム (Yb), ランタノイド
Element 71: ルテチウム (Lu), ランタノイド
Element 72: ハフニウム (Hf), 遷移金属
Element 73: タンタル (Ta), 遷移金属
Element 74: タングステン (W), 遷移金属
Element 75: レニウム (Re), 遷移金属
Element 76: オスミウム (Os), 遷移金属
Element 77: イリジウム (Ir), 遷移金属
Element 78: 白金 (Pt), 遷移金属
Element 79: 金 (Au), 遷移金属
Element 80: 水銀 (Hg), 卑金属
Element 81: タリウム (Tl), 卑金属
Element 82: 鉛 (Pb), 卑金属
Element 83: ビスマス (Bi), 卑金属
Element 84: ポロニウム (Po), 金属
Element 85: アスタチン (At), ハロゲン
Element 86: ラドン (Rn), 希ガス
Element 87: フランシウム (Fr), アルカリ金属
Element 88: ラジウム (Ra), アルカリ土類金属
Element 89: アクチニウム (Ac), アクチノイド
Element 90: トリウム (Th), アクチノイド
Element 91: プロトアクチニウム (Pa), アクチノイド
Element 92: ウラン (U), アクチノイド
Element 93: ネプツニウム (Np), アクチノイド
Element 94: プルトニウム (Pu), アクチノイド
Element 95: アメリシウム (Am), アクチノイド
Element 96: キュリウム (Cm), アクチノイド
Element 97: バークリウム (Bk), アクチノイド
Element 98: カリホルニウム (Cf), アクチノイド
Element 99: アインスタイニウム (Es), アクチノイド
Element 100: フェルミウム (Fm), アクチノイド
Element 101: メンデレビウム (Md), アクチノイド
Element 102: ノーベリウム (No), アクチノイド
Element 103: ローレンシウム (Lr), アクチノイド
Element 104: ラザホージウム (Rf), 遷移金属
Element 105: ドブニウム (Db), 遷移金属
Element 106: シーボーギウム (Sg), 遷移金属
Element 107: ボーリウム (Bh), 遷移金属
Element 108: ハッシウム (Hs), 遷移金属
Element 109: マイトネリウム (Mt), 遷移金属
Element 110: ダームスタチウム (Ds), 遷移金属
Element 111: レントゲニウム (Rg), 遷移金属
Element 112: コペルニシウム (Cn), 卑金属
Element 113: ウンウントリウム (Uut), 卑金属
Element 114: フレロビウム (Fl), 卑金属
Element 115: ウンウンペンチウム (Uup), 卑金属
Element 116: リバモリウム (Lv), 卑金属
Element 117: ウンウンセプチウム (Uus), ハロゲン
Element 118: ウンウンオクチウム (Uuo), 希ガス
Nickel has a face-centered cubic crystal structure
28Ni
外見
銀白色
Nickel chunk.jpg
一般特性
名称, 記号, 番号 ニッケル, Ni, 28
分類 遷移金属
, 周期, ブロック 10, 4, d
原子量 58.6934(4)(2) g·mol-1
電子配置 [Ar] 3d8 4s2
電子殻 2, 8, 16, 2(画像
物理特性
固体
密度室温付近) 8.908 g·cm-3
融点での液体密度 7.81 g·cm-3
融点 1728 K, 1455 °C, 2651 °F
沸点 3186 K, 2913 °C, 5275 °F
融解熱 17.48 kJ·mol-1
蒸発熱 377.5 kJ·mol-1
熱容量 (25 °C) 26.07 J·mol-1·K-1
蒸気圧
圧力 (Pa) 1 10 100 1 k 10 k 100 k
温度 (K) 1783 1950 2154 2410 2741 3184
原子特性
酸化数 4[1], 3, 2, 1[2], -1
(弱塩基性酸化物)
電気陰性度 1.91(ポーリングの値)
イオン化エネルギー
詳細
第1: 737.1 kJ·mol-1
第2: 1753.0 kJ·mol-1
第3: 3395 kJ·mol-1
原子半径 124 pm
共有結合半径 124±4 pm
ファンデルワールス半径 163 pm
その他
結晶構造 面心立方
磁性 強磁性
電気抵抗率 (20 °C) 69.3 nΩ·m
熱伝導率 (300 K) 90.9 W·m-1·K-1
熱膨張率 (25 °C) 13.4 µm·m-1·K-1
音の伝わる速さ
(微細ロッド)
(r.t.) 4900 m·s-1
ヤング率 200 GPa
剛性率 76 GPa
体積弾性率 180 GPa
ポアソン比 0.31
モース硬度 4.0
ビッカース硬度 638 MPa
ブリネル硬度 700 MPa
CAS登録番号 7440-02-0
最安定同位体
詳細はニッケルの同位体を参照
同位体 NA 半減期 DM DE (MeV) DP
58Ni 68.077 % 中性子30個で安定
59Ni trace 76000 y ε - 59Co
60Ni 26.223 % 中性子32個で安定
61Ni 1.14 % 中性子33個で安定
62Ni 3.634 % 中性子34個で安定
63Ni syn 100.1 y β- 0.0669 63Cu
64Ni 0.926 % 中性子36個で安定

ニッケル (: nickel, : niccolum) は、原子番号28の金属元素である。元素記号Ni

地殻中の存在比は約105 ppmと推定されそれほど多いわけではないが、鉄隕石中には数%含まれる。特に 62Ni の1核子当たりの結合エネルギーが全原子中で最大であるなどの点から、と共に最も安定な元素である。岩石惑星を構成する元素として比較的多量に存在し、地球中心部のにも数%含まれると推定されている。

性質[編集]

銀白色の金属で鉄族に分類される。原子量は約58.69である。常温で安定な結晶格子は、面心立方構造 (FCC) であり、また、よりは弱いが強磁性体キュリー点は350 °Cであり鉄族元素としては最も低い。

銀白色の光沢ある金属であり乾燥した空気中ではさびにくいが、微粒子状のものは空気中で自然発火することもあり、細いニッケル線は酸素中で火花を出して燃焼する。水素よりイオン化傾向がやや大きく、塩酸および希硫酸に徐々に溶解し緑色の水和ニッケルイオンを生成するがその反応は極めて遅い。酸化作用を持つ希硝酸には速やかに溶解し濃硝酸では不動態を形成する。アルカリに対しては比較的強い耐食性を示す。

Ni + 2 H+(aq) → Ni2+(aq) + H2
3 Ni + 8 HNO3 → 3 Ni(NO3)2 + 2 NO + 4 H2O

微粒子状の金属粉末は水素および窒素ガスなどを吸蔵し水素付加反応を活性化させる作用をもち、融解状態でもこれらの気体を吸収し、凝固時にその大部分を放出するため表面が巣穴になりやすい。また鉄と同様に融解状態では炭素を6.25 %まで溶解し、凝固するとグラファイトを析出する。

50-60 °Cで微粉末状のニッケルに一酸化炭素を反応させるとテトラカルボニルニッケルを生成し、これを200 °Cに加熱すると分解してニッケルを生じるためこの反応はモンド法と称してニッケルの精製に用いられる。

Ni + 4 CO  \rightleftarrows\ Ni(CO)4

用途[編集]

光沢があり耐食性が高いためめっきに用いられるほか、ステンレス鋼硬貨の原料などにも使用される。日本で2010年現在発行されている50円硬貨100円硬貨とニッケルの合金(白銅)である。アメリカ合衆国5セント硬貨も白銅だが、通称「ニッケル」と呼ばれている。純ニッケルも硬貨の材料として用いられたことがある。これはニッケルが特殊鋼薬莢の材料である白銅の原料として重要であるため、国家が備蓄し、平時は硬貨として流通させ、有事に際しては他の素材の硬貨や紙幣で代替して回収するためである。日本でも第二次世界大戦直前の1933年(昭和8年)から1937年(昭和12年)にかけて、5銭と10銭のニッケル硬貨が発行されており、その名目で軍需物資であるニッケルを輸入した。ただし、戦後もニッケル硬貨は発行されていて、1955年(昭和30年)から1966年(昭和41年)まで発行されていた50円硬貨がニッケル硬貨である。

磁性材

ニッケルとモリブデンクロムを加えた合金パーマロイと呼ぶ。優れた軟磁性材料であることから、変圧器鉄心磁気ヘッドに用いられている。

耐熱材

ニッケル36 %、鉄64 %の合金を「インバー」、ニッケル36 %、鉄52 %、コバルト12 %の合金を「エリンバー」と呼ぶ。インバー合金は熱膨張率が非常に小さく、エリンバー合金は温度による弾性率の変化が非常に小さいという特徴があり、機械式時計の発条などの精密機械に用いられている。ニッケルベースの合金である各種のインコネルは、その耐熱性からタービンコンプレッサ材料等に用いられる。

形状記憶合金

チタンとニッケルの1:1の合金は最も一般的な形状記憶合金となる。

触媒

ニッケルは不飽和炭素結合に対する水素付加不均一系触媒としてラネー合金などに加工され工業的に用いられる。

電極材

水酸化ニッケルはニッケル・水素蓄電池ニッケル・カドミウム蓄電池等の二次電池の正極に使われる。

水素貯蔵合金

水素を取り込む性質を利用し、水素貯蔵合金の AB5 型、Mg 型。

歴史[編集]

アクセル・クロンステット (Axel Frederik Cronstedt) が1751年に単体分離。名称はドイツ語Kupfernickel(悪魔の)に由来する[3]。これは、ニッケル鉱石である紅砒ニッケル鉱 (NiAs) が銅鉱石に似ていながら これから銅を遊離できなかったために、坑夫たちがこう呼んだためと言われている。

産地[編集]

ニッケル鉱石の生産は世界全体で134万トン(2009年現在)である。その内訳はロシアが19 %、オーストラリア14 %、インドネシア12 %、カナダ10 %、ニューカレドニア7 %となっている[4]

鉱石としては、主に蛇紋岩中に産出する珪ニッケル鉱(Garnierite、(Ni,Mg)3Si2O5(OH)4 とされるが、組成が一定しないので独立種とは認められていない)、磁硫鉄鉱などと共産するペントランド鉱(Pentlandite、(Fe,Ni)9S8)が主に採掘されている。

日本のニッケル鉱山と産出[編集]

日本では第二次世界大戦中、京都府与謝郡大江山で開発されたニッケル鉱山で日本冶金工業が採鉱して、近くの製錬所でフェロニッケルに製錬し、さらに川崎市の同社工場でニッケル合金として軍用に提供していた。 また山口県においても、山口県周南市~岩国市にかけて断続的に蛇紋岩帯があり、昭和15年~20年にかけて金峰鉱山などで採掘が行なわれた。この他に千葉県の房総半島など、蛇紋岩帯の存在する地域で採掘が行なわれた。しかし、これは戦時体制による商業コストを度外視したものであり、ほとんどが終戦とともに閉山・廃鉱となった。

この金属は、日本国内において産業上重要性が高いものの、産出地に偏りがあり[5]供給構造が脆弱である。日本では国内で消費する鉱物資源の多くを他国からの輸入で支えている実情から、万一の国際情勢の急変に対する安全保障策として国内消費量の最低60分を国家備蓄すると定められている。

生物との関わり[編集]

ウレアーゼ尿素分解酵素)やいくつかのヒドロゲナーゼ分子水素酸化還元酵素)などは、その機能を発現するためにニッケルを取り込んでいる[6]。しかしながら、ニッケルは金属アレルギーを引き起こしやすい金属の一つであり、WHO の下部組織 IARC はニッケル化合物を「Group1:ヒトに対する発癌性が認められる化学物質」としている[7]。記事 IARC発がん性リスク一覧に詳しい。

主な合金[編集]

ニッケルの化合物[編集]

化合物中の原子価は2価が最も安定であるが3価および4価のニッケル原子を含む錯体も存在し、-1、0、+1といった低原子価の錯体も存在する。強酸陰イオンよりなる類は一般的に水に可溶であるが、カルコゲンなどとの化合物は難溶または不溶である。

同位体[編集]

脚注・出典[編集]

[ヘルプ]
  1. ^ M. Carnes et al. (2009). “A Stable Tetraalkyl Complex of Nickel(IV)”. Angewandte Chemie International Edition 48: 3384. doi:10.1002/anie.200804435. 
  2. ^ S. Pfirrmann et al. (2009). “A Dinuclear Nickel(I) Dinitrogen Complex and its Reduction in Single-Electron Steps”. Angewandte Chemie International Edition 48: 3357. doi:10.1002/anie.200805862. 
  3. ^ 桜井 弘 『元素111の新知識』 講談社1998年、155頁。ISBN 4-06-257192-7 
  4. ^ 外務省 国際ニッケル研究会の概要
  5. ^ ロシア、カナダ、インドネシア、豪州、ニューカレドニアで約3分の2を占める。
  6. ^ 一島英治、『酵素の化学』 p.45
  7. ^ ただし、IARC の報告は疫学的リスク評価であり、ニッケルおよびニッケル化合物に人に対して発癌するリスクが存在するという意味であり、どの位の量をどのくらい長期間接触したら発癌するといった量的評価ではない。

関連項目[編集]

外部リンク[編集]