出典: フリー百科事典『ウィキペディア(Wikipedia)』
Jump to navigation Jump to search
生息年代: 石炭紀後期-ペルム紀前期
Meganeura monyi
: 動物界 Animalia
上門 : 脱皮動物上門 Ecdysozoa
: 節足動物門 Arthropoda
亜門 : 六脚亜門 Hexapoda
: 昆虫綱 Insecta
亜綱 : 双丘亜綱 Dicondylia
下綱 : 有翅下綱 Pterygota
: オオトンボ目 Protodonata
オオトンボ目 Protodonata Brongniart1893


  • † メガネウラ科 Meganeuradae
  • † Paralogidae

オオトンボ目(別名、原トンボ目、学名:Protodonata)は、巨大化した昆虫が含まれる絶滅した昆虫類()であり、英語では、”griffinfly”とも呼ばれている。オオトンボ目は、古生代石炭紀後期からペルム紀)時代に存在した。ほとんどの種は、現生のトンボよりもわずかに大きいだけであったが、石炭紀後期に存在したメガネウラMeganeura monyi)、メガティプス(Megatypus )、ペルム紀前期に存在したメガネウロプシス・ペルミアナ(新参異名:メガネウロプシス・アメリカナ(Meganeuropsis americana))(Meganeuropsis permiana )は、現在知られている最大の昆虫である。メガネウロプシス・ペルミアナは、翼長が最大71センチメートルであった[1]

石炭紀前期に存在したトンボの祖先であるMeganeura monyi。翅長は680ミリメートルに達した[2] (トゥールーズ博物館所蔵)




オオトンボ目はトンボ目に含まれる場合もあるが、トンボ目に特徴のある翼の機能を欠いており、グリマルディ英語版エンゲル英語版は、俗称である”giant dragonfly”(巨大トンボ)の代わりに”griffinfly”を用いるよう提案している。







  1. ^ Grimaldi & Engel 2005 p.175
  2. ^ The Biology of Dragonflies. CUP Archive. p. 324. GGKEY:0Z7A1R071DD. http://books.google.com/books?id=J584AAAAIAAJ&pg=PA324. "No Dragonfly at present existing can compare with the immense Meganeura monyi of the Upper Carboniferous, whose expanse of wing was somewhere about twenty-seven inches." 
  3. ^ トンボの翅の前線の先にある翅の膜が黒や褐色をした部分
  4. ^ Hoell, H.V., Doyen, J.T. & Purcell, A.H. (1998). Introduction to Insect Biology and Diversity, 2nd ed.. Oxford University Press. p. 321. ISBN 0-19-510033-6. 
  5. ^ Gauthier Chapelle and Lloyd S. Peck (1999年5月). “Polar gigantism dictated by oxygen availability”. Nature 399 (6732): 114–115. doi:10.1038/20099. http://www.nature.com/nature/journal/v399/n6732/abs/399114b0.html. "Oxygen supply may also have led to insect gigantism in the Carboniferous period, because atmospheric oxygen was 30-35% (ref. 7). The demise of these insects when oxygen content fell indicates that large species may be susceptible to such change. Giant amphipods may therefore be among the first species to disappear if global temperatures are increased or global oxygen levels decline. Being close to the critical MPS limit may be seen as a specialization that makes giant species more prone to extinction over geological time." 
  6. ^ Westneat MW, Betz O, Blob RW, Fezzaa K, Cooper WJ, Lee WK. (2003年1月). “Tracheal respiration in insects visualized with synchrotron x-ray imaging”. Science 299 (5606): 558–560. doi:10.1126/science.1078008. PMID 12543973. "Insects are known to exchange respiratory gases in their system of tracheal tubes by using either diffusion or changes in internal pressure that are produced through body motion or hemolymph circulation. However, the inability to see inside living insects has limited our understanding of their respiration mechanisms. We used a synchrotron beam to obtain x-ray videos of living, breathing insects. Beetles, crickets, and ants exhibited rapid cycles of tracheal compression and expansion in the head and thorax. Body movements and hemolymph circulation cannot account for these cycles; therefore, our observations demonstrate a previously unknown mechanism of respiration in insects analogous to the inflation and deflation of vertebrate lungs." 
  7. ^ Robert Dudley (1998年4月). “Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotion performance”. The Journal of Experimental Biology 201 (Pt8): 1043–1050. PMID 9510518. "Uniformitarian approaches to the evolution of terrestrial locomotor physiology and animal flight performance have generally presupposed the constancy of atmospheric composition. Recent geophysical data as well as theoretical models suggest that, to the contrary, both oxygen and carbon dioxide concentrations have changed dramatically during defining periods of metazoan evolution. Hyperoxia in the late Paleozoic atmosphere may have physiologically enhanced the initial evolution of tetrapod locomotor energetics; a concurrently hyperdense atmosphere would have augmented aerodynamic force production in early flying insects. Multiple historical origins of vertebrate flight also correlate temporally with geological periods of increased oxygen concentration and atmospheric density. Arthropod as well as amphibian gigantism appear to have been facilitated by a hyperoxic Carboniferous atmosphere and were subsequently eliminated by a late Permian transition to hypoxia. For extant organisms, the transient, chronic and ontogenetic effects of exposure to hyperoxic gas mixtures are poorly understood relative to contemporary understanding of the physiology of oxygen deprivation. Experimentally, the biomechanical and physiological effects of hyperoxia on animal flight performance can be decoupled through the use of gas mixtures that vary in density and oxygen concentration. Such manipulations permit both paleophysiological simulation of ancestral locomotor performance and an analysis of maximal flight capacity in extant forms." 
  8. ^ Nel A.N., Fleck G., Garrouste R. and Gand, G. (2008): The Odonatoptera of the Late Permian Lodève Basin (Insecta). ‘’Journal of Iberian Geology 34(1): 115-122
  9. ^ Bechly G. (2004): Evolution and systematics. pp. 7-16 in: Hutchins M., Evans A.V., Garrison R.W. and Schlager N. (eds): Grzimek's Animal Life Encyclopedia. 2nd Edition. Volume 3, Insects. 472 pp. Gale Group, Farmington Hills, MI