アポロニウスの問題

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動先: 案内検索
図1: アポロニウスの問題に対する解法。与円は黒で示されている。
図2: アポロニウスの問題に対する解法である4つの相補的な円の対。与円は黒で示されている。

ユークリッド平面幾何学においてアポロニウスの問題: Problem of Apollonius)とは、平面において与えられた3つの円に接する円を描く問題である(図 1)。ペルガのアポロニウス (ca. 262 BC – ca. 190 BC)が彼の著作 「接触」 Ἐπαφαί (Epaphaí, "Tangencies")においてこの有名な問題を提起し、解決した。この著作「接触」は現在失われているが、アレキサンドリアのパップスによる、アポロニウスの成果がまとめられた4世紀のレポートは現存している。3つの与円[注釈 1]は一般的に、その3つの円に接する8つの異なる円を持ち(図 2)、この円が3つの円を内部に持つか外部に持つかはそれぞれ異なる。すなわち、それぞれの円は、与えられた3つの円のうち一部を内部に持ち(残りの円は外部に持つ)、濃度が3の集合の部分集合は 23 = 8 つ存在するため、そのような円は8つ存在する。

16世紀にアドリアン・ファン・ルーメン英語版が交差する双曲線を用いてこの問題に解を与えたが、この解法は定規とコンパスのみを使った作図ではなかった。同じ解をフランソワ・ビエトある種の極限英語版(三つの与円のどれでも、それを半径 0(つまり点)にまで縮めたり、半径無限大(つまり直線)にまで拡大したりできる)に相当することを示して、定規とコンパスのみを使った解法を与えた。より単純な極限化の操作によって、より複雑なケースに対して解法を与えるというビエトのアプローチは、アポロニウスの手法の妥当な再構成であると考えられている。ファン・ルーメンの手法はアイザック・ニュートンによって単純化された。ニュートンは、アポロニウスの問題は、ある点の既知の3つの点への距離の差から、その点の位置を探し出すことに等しいことを示した。これはLORANなどの位置測定システムやナビゲーションシステムに応用されている。

後世の数学者は代数学的な手法を導入した。これは幾何学の問題を代数方程式に置き換えるものである。これらの手法はアポロニウスの問題に備わる数学的な対称性を利用することによって単純化された。例えば、解円は一般に2つずつの対で生じ、この対のうち一方は与円を内部に持ち、他方は外側に持つ(図 2)。ジョセフ・ジェルゴンヌ英語版 は定規とコンパスのみを使って描く、エレガントさで知られる解法を与えるために、この対称性を用いた。一方で、他の数学者は円に関する反転などの幾何学的変換英語版を用いて、与円の配置を単純化した。これらの発展は、(リー球面幾何学英語版を使って)代数学的手法に幾何学的設定をもたらし、さらに33の本質的に異なる与円の配置に基づく解円の分類をもたらした。

アポロニウスの問題は更なる研究を刺激した。3次元への一般化(4つの与えられた球面に接する球面をつくる)や、より高い次元についても研究がなされている。3つの互いに接する円の配置も特別な関心を寄せられている。ルネ・デカルトは解円と与円の半径を結びつける公式を与え、この公式は現在ではデカルトの定理として知られている。繰り返しアポロニウスの問題を解くことは、この場合、アポロニウスのギャスケット をもたらす。アポロニウスのギャスケットは紙上で詳述された最初期のフラクタルのひとつであり、これはフォードの円ハーディ・リトルウッドの円分法英語版を通して、数論における重要な概念となっている。

アポロニウスの問題の言明[編集]

アポロニウスの問題の一般的言明は、ひとつあるいはそれ以上の円を、平面上に与えられた3つのオブジェクトに対して接するように描くというものである。オブジェクトは直線でもいいし、あるいは点や、円でもよい(この円の大きさは問わない)[1][2][3][4]。これらのオブジェクトはどのようにも配置されうるし、お互いに重なりあってしまうこともある。しかし、このオブジェクトは基本的に相異なるものとして扱われ、すなわち、これらのオブジェクトが完全に一致してしまうことはない。アポロニウスの問題に対する解は、時に「アポロニウスの円」と呼ばれる。ただし、アポロニウスの円という名前は、アポロニウスに関連した他のタイプの円に対しても使われる。

接するという性質については次のように定義されている。第一に、点、直線、円はそれ自身と接していると考える。これによって、仮に与円がすでに他の2つの与円に接していれば、その配置自体がアポロニウスの問題に対する解のひとつとしてカウントされる。2つの相異なる幾何学的オブジェクトは、もしこの2つのオブジェクトがある一点を共有していれば、これらの2つの相異なるオブジェクトは「交わっている」と言われる。ある一点が、円もしくは直線に交わっているなら、その点はその円あるいは直線と接していると定義する。なお、ここで「交わっている」というのはこの点が、この円上、または直線上にあるということでもある。このことから、2つの相異なる点は接することはできない。もし、交点における直線・円間の角度がゼロであるならば、このような直線・円は接しているとされる。この交点は接点(tangent point、あるいはpoint of tangency)と呼ばれる。なお、この「接触 tangent」という言葉はラテン語現在分詞tangensに由来し、「接触している touching」という意味である。実際には、2つの相異なる円が一点で交わっていれば、この2つの円は互いに接している、と考えればいいだろう。もし、この2つの円の交点がゼロ、あるいは交点が2つ存在するならば、この2つの円は接していない。同じことが一つの直線と一つの円の組み合わせの場合にも言える。2つの相異なる直線は平面上では接することができない。ただし、反転幾何学射影幾何学では2つの平行する直線は無限遠点で接しているとも考えられる。下記を参照[5][6]

解円は、与えられた3つの円それぞれに、内部にであれ、外部にであれ、接している。外接(external tangency)は、解円が与円に接する点において、2つの円のカーブがお互いに逆の方向を向いているものである。これらの2つの円は、その点における接線英語版の違う側に存在し、どちらかの円がもう一方の円を外部に持つ。この外接の場合、解円と与円の距離は、この2つの円の半径の和に等しい。これとは対照的に、内接(internal tangency)とは、解円と与円が、接している点において、円のカーブが同じ方向である場合を指す。この場合、この2つの円は、円の接線の同じ側に存在し、どちらかの円がもう一方の円を内部に持つ。この場合、この2つの円の中心同士の距離は、2つの円の半径の差に等しい。図解としては、図 1の(解である)ピンクの円が、内部で、右側の黒い中くらいの大きさの与円と接している。一方で、左側の一番小さな与円と一番大きな与円とは、外接している。

アポロニウスの問題は、また、3つの「与えられた」への距離のが3つの既知の値と等しいような1つ(もしくはそれ以上)の点を特定する問題であると再定義することができる。ここで、半径 rs である解円と、半径がそれぞれr1, r2, r3 である3つの与円を考える。もし、解円がこれら3つすべての与円と外部で接するのであれば、それぞれ、解円の中心と3つの与円の中心の距離はそれぞれ次に等しい。d1 = r1 + rs 、そしてd2 = r2 + rs 、およびd3 = r3 + rs である。このため、これら距離における差は、例えばd1d2 = r1r2のように、みな定数である。これらはただ、既知の与円の半径にのみ依存し、解円の半径 rsには依存せず、解円の半径の影響は除かれる。このアポロニウスの問題の再定義では、「距離の差」を対応する「距離の和」へと変えることによって、内接の解円(円の中心間の距離が半径の差に等しい)に一般化することができ、また、「距離の差」を対応する「距離の和」へと変えたことによって、解円の半径を rs とすると、その影響はさきほどと同じように除かれる。この中心間の距離に関する再定義は、アイザック・ニュートンアドリアン・ファン・ルーメン英語版が考案した以下の解法を考える際や、双曲線測位(Hyperbolic positioning)において、また既知の3点の距離の差から位置を特定する三辺測量において便利である。例えば、LORANのようなナビゲーションシステムは固定された3点から送られた信号の到達時間の差から受信者の位置を特定する(送信機からの受信者の距離の差に対応している)[7][8]

歴史[編集]

アポロニウスの問題を解決するために、豊富な幾何学的・代数学的手法が開発されてきたという歴史があり[9][10]、このため、アポロニウスの問題は幾何学における「もっとも有名な問題」と呼ばれてきた[3]。ペルガのアポロニウスの元々のアプローチは失われてしまっているものの、 フランソワ・ビエトによるアポロニウスの問題に対する作図法を始めとした種々のアプローチはアレキサンドリアのパップスの記述による手がかりをもとにしている[11][12]。アポロニウスの問題に対する、新しい、最初の解法は1596年にアドリアン・ファン・ルーメン英語版によって発表された。ファン・ルーメンはこの解法において、アポロニウスの問題の解円の中心は、2つの双曲線の交点であることを発見した[13][14]。このファン・ルーメンの手法は1687年にアイザック・ニュートンによって改良されており、これはニュートンのプリンキピアに記述されている[15][16]。なお、同手法は1881年にジョン・ケーシィ英語版によっても改良されている[17]

ファン・ルーメンの手法は、アポロニウスの問題を解決することには成功したのだが、この手法には欠点がある。定規とコンパスのみを使って問題を解くことこそが、古典的ユークリッド幾何学において真に賛美されるものなのである[18]角の三等分問題のように、コンパスと定規だけでは解けない問題もたくさんある。しかしながら、そのようなコンパスと定規だけでは解けない問題は、双曲線楕円放物線円錐曲線)のような、交差する曲線(intersecting curve)を使うことで解決できる場合がしばしばあるのである。例えば、立方体倍積問題(与えられた立方体の2倍の体積を持つ立方体を作図する問題)は、コンパスと定規だけでは作図することができないが、ミーネクモス英語版は、2つの放物線の交点を用いることで、立方体倍積問題が解決可能であることを示した[19]。よって、ファン・ルーメンの解法――2つの交差する双曲線の交点を用いる解法――は、アポロニウスの問題が「コンパスと定規のみで解決可能」であるかどうかを示さなかったのである。

そもそもファン・ルーメンにアポロニウスの問題に取り組むようにけしかけたのは、ファン・ルーメンの友人であるフランソワ・ビエトであったが、ビエトはコンパスと定規のみを使う手法を開発した[20]。ビエトの解法が発表される以前は、レギオモンタヌスはアポロニスの問題がコンパスと定規のみで解決可能であるのかを疑っていた[21]。ビエトは、まずアポロニウスの問題の単純な特別なケース、例えば3つの与えられた点をすべて通る円を描く問題のようなケースを解決した。この場合、解法はただひとつしか存在しない。それから、ビエトはより複雑な特別なケースに解を与えようとした。一部のケースでは、与円を膨らませたり、縮めたりすることによって、このようなケースに解を与えようとした[1]。アレキサンドリアのパップスによる4世紀のレポートによれば、アポロニウスの問題について書かれたアポロニウス自身の著書「接触」 Ἐπαφαί (Epaphaí, "Tangencies"; Latin: De tactionibus, De contactibus) は似たような段階的アプローチを取っていた[11]。これゆえに、ビエトの解法はアポロニウスの問題の説得力ある再構成であると考えられている。ただし、ビエトのものとは異なる再構成が、3人の異なる著者によって独立に発表されている[22]

アポロニウスの問題に対する他の幾何学的解法は19世紀に開発された。もっとも有名な解法は Poncelet (1811) によるものである[23]。また、Gergonne (1814) による解法も有名なもののひとつである[24]。ポンスレの証明は円の相似中心英語版や、方べきの定理に依るものであったのに対して、Gergonneの手法は直線と円の軸英語版の間の結合関係を利用した。円の反転を用いた手法は1879年のジュリウス・ピーターセンによるものが先駆けとなった[25]。ひとつの例としては、コクセターによるAnnual solution methodである[2]。また、さらに別のアプローチとしてはリー球面幾何学英語版を用いたものが挙げられる[26]。なお、これはソフス・リーによって開発されたものである。

アポロニウスの問題に対する代数学的解法は17世紀にルネ・デカルトフォン・デア・プファルツによるものが先駆けとなった。なお、デカルトとフォン・デア・プファルツの解法はかなり複雑である[9]。実際的な代数的手法は、18世紀・19世紀に一部の数学者によって開発された。この数学者にはレオンハルト・オイラー[27]ニコラス・ファス英語版[9]カール・フリードリヒ・ガウス[28]ラザール・カルノー[29]、そしてオーギュスタン=ルイ・コーシーが含まれる[30]

解法[編集]

交差する双曲線[編集]

図3: 2つの与円(黒)とその双方に接する円(ピンク)。これら円の中心間の距離 d1d2r1 + rsr2 + rs にそれぞれ等しい。よって、これらの差は rs とは独立に決まる。

van Roomen (1596) の解法は、2つの双曲線の交差に基づいている[13][14]。与円をそれぞれ C1, C2, C3 とする。ファン・ルーメンは、C1C2 のような 2 つの与円に接する円を探すという、より単純な問題を解くことで問題全体を解いた。ファン・ルーメンが注意したのは、2つの与円に接する円の中心は双曲線上に存在するということであった。この双曲線の焦点は、2つの与円の中心に等しい。これを理解するために、解円の半径を rs, 2つの与円の半径をそれぞれ r1r2 とする(図 3)。解円の中心と C1 の距離 d1 は、この 2 つの円が外接するか内接するかに応じて、rs + r1 あるいは rsr1 である。これと同様に、解円の中心と C2 の距離 d2 は、外接か内接かに応じて rs + r2 あるいは rsr2 である。したがって、これらの距離の差 d1d2 は必ず、rs によらない定数である。この焦点に対して、「一定の距離の差」を持つという性質は双曲線を特徴づけるものであり、このため、解円の中心となりうる点は双曲線上に存在するのである。 2つめの双曲線は与円 C2C3 の対に対して描くことが可能であるが、ここでは解と C2 の内接・外接は、最初の双曲線のものと矛盾のないように選ばれなければいけない。この2つの双曲線の交差は、(もし交差が存在すれば)3つの与円に内接あるいは外接するような解円の中心を与える。アポロニウスの問題に対する解の完全な集合は、3つの与円に対する、すべての可能な解円の内接・外接の組み合わせを考えることで探すことができる。

Newton (1687) はファン・ルーメンの解法を、解円の中心が、直線と円の交点になるように改良した[15]。ニュートンはアポロニウスの問題を三辺測量英語版の問題として再定義した。すなわち、点 Z から3つの与えられた点 A, B, C までの距離の差が既知の値であるときに、これらの3つの点から点 Z の位置を特定する問題である[31]。これらの4つの点(点 Z と点 A, B, C)は、解円の中心(点 Z)と3つの与円の中心(点 A, B, C)に対応している。

2つの固定された点に対して、距離の比 d1/d2 が一定になるような点の集合は円となる。

上記のように2つの双曲線を求めるかわりに、ニュートンはそれらの準線を描いた。あらゆる双曲線に対して、点 Z から焦点 A の距離と点 Z からの準線 (directrix) の距離の比率は一定であり、これは離心率と呼ばれる。2つの準線は点 T で交差し、これらの2つの既知の距離の比率から、 ニュートンは、点 T を通り、さらにその線上に点 Z が存在するような直線を描いた。しかしながら、距離の比 TZ/TA もまた既知の値であるため、点 Z は既知の円上にも存在する。なぜなら、が、2つの固定された点に対して所与の距離の比率を持つ点の集合だと定義することができるとアポロニウスが示したためである(余談ではあるがこの定義は双曲座標英語版の基礎となっている)。このため、アポロニウスの問題に対する解は円と直線の交点となるのである。

ビエトの再構成[編集]

アポロニウスの問題は、10の特別なケースがあり、円(Circle, C)、直線(Line, L)、点(Point, P)などの「与えられた3つのオブジェクト」の性質によって分類される。慣習的に、これらの10のケースは、CCPなどの3文字のコードで区別される[32][12]。ビエトはこれら10のケースすべてに対して、コンパスと定規のみを使った作図問題を解決した。ビエトは、似たケースの解法を、より複雑なケースを解くのに利用した[1][20]

図4: 円の半径が等量で変化した場合、円同士の接点は維持される。ピンクの解円は内接する円(右側の黒い円)とともに縮むか、あるいは膨らむ。これに対して、外接する円(左側の黒い円)はこれらの円とは逆に膨らんだり、縮んだりする。

ビエトはPPP(3つの点)のケースを、ユークリッド原論に記載されている手法に従って解くことから始めた。ここから、ビエトは方べきの定理に相当する補題を得た。ビエトはこの補題を用いて、LPP(1本の直線と2つの点)のケースを解決した。再度ユークリッドの手法に従い、角の二等分線定理英語版を用いて、ビエトはLLL(3本の直線)のケースを解決した。そして、ビエトは、1点を通り、角の二等分線に対して垂直な直線を描くための補題を得た。そしてこれを、ビエトはLLP(2本の直線と1つの点)のケースを解くために用いたのである。以上はアポロニウスの問題の最初の4つのケース(これらのケースは円を含まない)を説明するものである。

残りの問題を解決するために、ビエトは与円と解円は接点を維持したまま大きさを変更することが可能であるという事実を活用した(図 4)。もし解円の半径が Δr だけ変化したならば、内接する与円の半径は同様に Δr だけ変化し、一方で外接する与円の半径は −Δr だけ変化する。このため、解円が膨らめば、内接する与円も同様に膨らみ、一方で外接する与円は接点を保ちながら縮む。

ビエトはこのアプローチを与円の1つを点になるまで縮めるために用いた。このように、ビエトは問題そのものをより単純な、すでに解決済みのものへと変えてしまったのである。ビエトは最初にCLL(1つの円と2本の直線)のケースを、円を点に縮めて、LLPのケースにすることで解決した。ビエトはそれから、CLP(1つの円と1本の直線、1つの点)のケースを3つの補題を用いることで解決した。ビエトは再度、円の1つを点にまで縮め、CCLのケースをCLPのケースに変え、解決した。それから、CPP(1つの円と2つの点)のケースを解決し、さらに2つの補題を用いてCCPのケースを解決した。最後に、ビエトは一般のCCC(3つの円)のケースを、円の1つを点にまで縮め、問題をCCPのケースに変えることで解決した。

代数学的解法[編集]

アポロニウスの問題は解円の中心と半径の3つの方程式の系として再構成が可能である[33]。なぜなら、3つの与円およびあらゆる解円は同じ平面上に存在するので、これらの円の位置は、これらの円の中心の (xy) 座標によって記述することが可能だからである。例えば、3つの与円の中心の位置は (x1y1), (x2y2), (x3y3) のように記述することが可能である。対して、解円の中心の位置は (xsys) のように記述することができる。同様に、与円と解円の半径は、それぞれ、r1, r2, r3, rs と記述することができる。解円が与円のそれぞれに厳密に接しなければいけないという条件は、次のような、xs, ys, rs に関する 3 つの連立二次方程式として表すことができる。

上記の右辺の 3 つの数字、 s1, s2, s3 は符号 (sign) と呼ばれ、±1 に等しくなり、求められる解円が対応する与円に内部で接するか (s = 1)、外部で接するか (s = −1) を決定する。例えば、図 1と図 4では、ピンクの解円は右側にある中くらいの大きさの与円に内接しており、左側の一番小さい与円と一番大きい与円には外接している。これらの与円を半径を基準に並べると、この解に対する符号は "− + −" となる。これら 3つの符号は独立に選択されうるため、8つの可能な等式の組み合わせ (2 × 2 × 2 = 8) が存在し、このそれぞれの組み合わせは解円の 8 つのタイプのそれぞれに対応している。

この3つの等式からなる一般方程式系は終結式を用いた手法によって解くことが可能である。この3つの等式を展開すると、3 つの等式はすべて xs2 + ys2 を左辺に持ち、 rs2 を右辺に持つ。 1 つの等式を他の1つの等式から引くことで、これら2次項を消すことができる。残った線形項を座標 xsys の式を作るために並び替えると次のようになる。

ただし、 M, N, P および Q は、与円と符号選択の既知の関数。これらの式を最初の 3 つの等式の 1 つに代入することで、rs に関する2次の等式を得ることができる。これは二次方程式の解の公式で解くことができる。また、これら線形式に対する rs の数値的な値の代入によって、 xsys の対応する数値的値を得ることができる。

等式の右辺の、符号 s1s2s3 の可能な選択は 8 通り存在し、それぞれの符号の選択は最大で 2 つの解を与える。なぜなら、rs に関する等式が二次方程式であるためである。そして、これは、アポロニウスの問題に対する解が最大で 16 通り存在するという(誤った)示唆を与えるものである。しかしながら、等式の対称性により、符号 si を伴った (rsxsys) が解であるならば、逆の符号 −si を伴った(−rsxsys) もまた解であり、そしてこれらは、同じ解円を表している。したがって、アポロニウスの問題は最大で 8 つの独立な解しかもたない(図 2)。このような二重カウントを避けるための一つの方法は、非負の半径を持つ解円のみを考えることである。

あらゆる二次等式の 2 つの根は 3 通りのタイプに分けられる。すなわち、2 つの異なる実数、2 つの同一の実数(i.e., 二重根)、複素共役な 2 つの根である。2 つの異なる実数根をもつケースは、通常の解に対応している。つまり、それぞれの根の対が円に関する反転によって関連づけられる解の対に対応している(図 6を参照)。2つの同一の実数を持つケースでは、2 つの根は同一であり、反転の下で自分自身に変換される解円に対応している。このケースでは、与円の一つがそれ自体、アポロニウスの問題に対する解円であり、相異なる解の数は 1 つ減る。複素共役な 2 つの半径のケースはアポロニウスの問題に対して幾何学的に可能な解には対応しない。なぜなら解円は虚数半径を持つことができないためである。よって、解の数は 2 つ減る。興味深いことに、アポロニウスの問題はちょうど 7 つの解をもつことはなく、7以外の 0 から 8 までの任意の数の解を持ちうる[12][34]

リー球面幾何[編集]

同様の等式はリー球面幾何英語版の文脈においても導くことができる[26]。リー球面幾何では、円・直線・点が 5 次元ベクトル X = (v, cx, cy, w, sr) として統一的に表される。ただし、c = (cx, cy) は円の中心であり、r は(非負の)半径である。 もし r が 0 でなければ、符号 s は正もしくは負である。視覚的な観点から言うならば、 s は円の向き英語版を表しており、反時計回りの円は正の s を持ち、時計回りの円は負の s を持つ。 パラメーター w は、直線ならば 0 であり、そうでなければ 1 である。

この 5 次元の世界には、ドット積に似た双線形な乗法

が存在する。リー二次曲線英語版とは、自身との積(二乗ノルム)が 0 となるベクトルの全体、すなわち (X | X) = 0 で定義される図形を言う。 X1, X2 をこの二次曲線上の 2 つのベクトルとする。これらの差のノルムは、定義により

と書ける。一方、積は加法と減法に対して分配的(より正確にいえば双線形)であるから、

となる。後者の式において (X1 | X1) = (X2 | X2) = 0 (双方とも二次曲線上にあるから)であり、また前者の式において X1, X2 が円であるものとすれば、円に対しては w1 = w2 = 1 ゆえ、まとめるとリー二次曲線上の任意の(円に対応する)ベクトル X1, X2 に対して

が成り立つことが分かる。ただし、c1c2 を挟む縦棒はこの差ベクトルの長さ(すなわちユークリッドノルム)を表す。この式から分かることは、二次曲線上の二ベクトル X1, X2 が互いに直交する(垂直である)ならば(つまり (X1 | X2) = 0 ならば)、対応する円は接するということである。このとき、もし 2 つの符号 s1, s2 が同じ(即ち、二円が同じ "向き")ならば二つの円は内接し、

ゆえ、これら二円の中心間の距離は半径のに等しい。対照的に、二つの符号 s1, s2 が相異なる(即ち、二円の "向き" が逆)ならば二円は外接し、

ゆえ中心間の距離は半径のに等しい。

以上の事から、アポロニウスの問題をリー幾何においてリー二次曲線上の直交ベクトルを求める問題として定式化しなおすことができる。具体的に言えば、リー二次曲線上のベクトルで、なおかつ与円に対応するベクトル X1, X2, X3 とも直交するもの、すなわち

を満足する解ベクトル Xsol を決定する問題である。

このように言い換えることによって、線型独立ですべて直交するベクトルの最大の個数に関する線型代数の定理を援用できるというメリットがある。これによって、解の最大数を数える別の方法を得ることができ、また、定理をさらに高次元な空間に拡張することができる[26][35]

反転法[編集]

図 5: 円に関する反転。点P'はこの円に関する点Pの反転。

アポロニウスの問題に対する自然な枠組みは反転幾何学である[4][12]。反転法の基本的な戦略は与えられたアポロニウスの問題を、別の、より単純で解くのが簡単なアポロニウスの問題へと変換することである。元々の問題への解法は変換した問題を元に戻すことで得られる。候補となる変換はアポロニウスの問題を別のものに変えるものでなくてはならない。すなわち、与えられた点、直線、円、を別の点、直線、円に変換しなくてはならず、これ以外の形状であってはならない。円反転はこのような性質を持ち、そして反転円の中心と半径をうまく選ぶことができる。他の候補にはユークリッド平面の等長写像英語版があるが、これは単に元々の問題を平行移動回転鏡映するだけなので、元々の問題を単純化するわけではない。

半径 R 、中心 O の円に関する反転は次のような操作で行われる(図 5)。任意の点 P の写る先の点 P' は、O, P, P' が同一直線状にあり、P および P' の中心 O までの距離の積が R の 2 乗に等しいような点である。

このため、もし P が円の外側に存在するのであれば、 P' は円の内側に存在し、逆もまた同様である。 PO のとき、反転は P を無限大へ送ると言う(複素解析においては、「無限大」はリーマン球面の見地から定義されている)。反転は、円または直線を常に円または直線に、点を常に点に変換するという便利な性質をもっている。反転においては円は円に変換されることが"多い"が、しかし、もし円が反転円の中心を通っていれば、この円は(反転円の中心を通らない)直線に変換され、逆に、反転円の中心を通らない直線は円に変換される。重要な事に、もし円が反転円に垂直に交わるならば、これは反転によって変化することはない。すなわち、自身に変換されるのである。

円反転はリーマン球面上のメビウス変換全体の部分集合に対応している。平面上のアポロニウスの問題はステレオ投影の逆写像によって球面上の問題に翻訳できる。よって、平面上のアポロニウスの問題の解法は球面上の対応部分にも直接関連するのである。以下で解説するよく知られている平面上の問題に対する反転的解法に加えて、その他の反転的解法も適用可能である[36]

反転による解の対[編集]

図 6 アポロニウスの問題に対する共役な解の対(ピンクの円)。与円は黒。

アポロニウスの問題に対する解は一般には対で生じる、つまり各解円に対して共役な解円が存在する(図 6)[1]。一方の解円は、他方の解円の内側に存在する与円に外接する。逆もまた同様である。例えば、図 6においては、一方の解円(左上のピンクの円)は2つの与円(黒い円)を内包しているが、3番目の円には外接する。これとは対照的に、共役解(右下のピンクの円)はこの3番目の与円を内包するが、他のふたつには外接する。このふたつの共役な解円は、次の議論において反転に関連している。

一般に、任意の3つの相異なる円は、その3つすべてに垂直に交わるただ1つの円(根円)を持ち、この円の中心を3つの円の根心英語版と呼ぶ[4]。具体例を挙げれば、図 6のオレンジの円が与円である黒い円に垂直に交わっている。この根円に関する反転は、与円を変化させることはないが、2つの共役な解円(ピンクの円)をお互いへと変換する。同じ反転の下では、対応するふたつの解円の接点もお互いへと変換される。具体例を言えば、図 6において、それぞれの緑の直線上の2つの青い点が、互いへと変換される。よって、これら共役接点を結ぶ直線は反転の下では不変である。よって、これら直線は反転の中心を通らねばならず、そしてこれは根心と呼ばれる(図6でいうと、オレンジの点に交わる緑の直線)。

円環への反転[編集]

もし3つの与円のうち2つが交わらないのであれば、2つの円が同心円となるように反転の中心を選ぶことができる[2][12]。この反転の下では、解円は2つの同心円の間の円環内部に存在する。従って、このとき解円は2つの1パラメータ族(one-parameter families)に属する。ひとつめの族においては(図 7)、解円は内側の同心円を内包せず、むしろ円環内の玉軸受のようになる。

2つめの族(図 8)においては、解円は内側の同心円を内包する。一般的にそれぞれの族に対して4つの解が存在し、8つの可能な解を生み出すが、これは代数学的解法とも矛盾しない。

図 7: 同心の与円(黒)の間に位置するひとつめの族の解円(ピンク)。解円の半径 rs の2倍は、内側と外側の円の半径の差 routerrinner に等しく、中心までの距離 ds の2倍は和 router + rinner に等しい。
図 8: 2つめの族の解円 (ピンク)は内側の与円(黒)を内包する。解円の半径 rs の2倍は内側と外側の円の半径の和 router + rinner に等しく、中心までの距離 ds の2倍は差 router - rinner に等しい。

与円のうち2つが同心円であるとき、アポロニウスの問題はガウスの方法を使って簡単に解くことができる[28]。3つの与円の半径の値は既知であるが、同心円の共通の中心から同心でない円までの距離 dnon も同様に既知の値である(図 7)。解円はその半径 rs 、 角度 θ 、解円の中心から同心円の共通の中心までの距離 ds 、解円の中心から同心でない円の中心までの距離 dT によって決定される。

解円の半径および距離 ds は既知の値である(図 7)。そして、距離 dT = rs ± rnon であり、これは解円が同心でない円に内接するか外接するかに依存する。従って、余弦定理から、

ここで、新たな定数 C は簡潔さのために定義されたものであり、下付きの記号は解円の内接・外接を示している。三角関数を用いて整理することで、4つの解を導きだすことができる。

この式は、 θ の符号の2つの選択と C に対する2つの選択に対応して、4つの解を示している。残りの4つの解は、図 8で示された rs および ds の代入を用いて、上記と同じ方法で得ることができる。すなわち、一般のアポロニウスの問題に対する8つすべての解をこの方法で得ることができる。

初期の交わりを持たない任意の2つの与円は次のように同心円に変えることができる。まず、2つの与円の根軸英語版を作図する。この根軸上の2つの任意の点 P および Q を選ぶことで、この根軸上に P および Q を中心とし、2つの与円に直交する2つの円を描くことができる。これら作図された円はお互いに2点で交わる。そのようなある反転点 F での反転は作図された円を点 F から放射する直線に、2つの与円を同心円に変え、3つめの与円は一般に別の円になる。これは、円の系がアポロニウスの円の集合に等価であることから従い、双極座標系を形成する。

大きさの変更と反転[編集]

反転という手法は、大きさの変更(Resizing)によってより便利になる[37][38]ビエトの再構成でも述べられているように、この3つの与円と解円は、接点を保ったまま、その大きさの変更が可能である。よって、初期のアポロニウスの問題は、より解くのが簡単であろう別の問題へと変換される。例えば、これら4つの円は、このうち1つの円が点に縮まるまで大きさの変更をすることができる。あるいは、しばしば、このうち2つの与円が互いに接するように大きさを変更される。また、いずれかのオブジェクトに交わっている与円は、円環へと変換する手法を用いると、交わりを解消するように大きさの変更ができる。このようなケースにおいて、元々のアポロニウスの問題の解に関しては、大きさの変更や反転によって変換された問題の解を得て、この変換された問題を、元々の問題に戻すことによって、元々の問題の解が得られる。

一つの与円を点にまで縮める[編集]

最初のアプローチにおいては、ひとつの与円が点 P に縮められるまで、すべての与円を(接点を保ったまま)縮めたり膨らませたりする [37]。その場合は、アポロニウスの問題の極限の場合として「円円点」(CCP) の問題に「退化」することになり、点 P を通る(2つの)与円および点 P に接する解円を探す問題へと変換される。P を中心とする円に関する反転は、2つの与円を新たな円に変え、解円を直線へと変える。よって、変換された問題に対する解は、2つの(変換された)与円に接する直線である。そのような解となる直線は4つあり、これは2つの与円の外部および内部の相似の中心英語版により作図されうるものである。P において再反転し、また大きさの変更を元に戻すことで、このような解となる直線を、元々のアポロニウスの問題への答えである解円へと変換することができる。すべての8つの一般解は、それぞれの解の内部・外部どちらの接点なのかの違いに従って円を縮めたり膨らませたりすることによって得られる。しかしながら、相異なる与円は点になるまで縮めることも可能であり、この場合は(円だけの場合とは)異なる解を得る。

二つの与円が接するまで大きさの変更をする[編集]

このアプローチでは、与円のうち2つが互いに接するように、与円の半径は適宜Δrの大きさだけ変更される[38]。これら2つの与円の接点は、接する円のそれぞれに2箇所で交わる円における反転の中心になるように選ばれる。反転することによって、互いに接している2つの円は2つの平行な直線となる。この2つの円の接点だけが反転することにより無限へと送られるため、これらの点が互いに交わったりすることはない。同様の反転は3つめの円を、別の異なる円へと変える。反転された問題の解は、(1)変換された3つめの円に接する、与えられた平行な2つの直線に平行する直線、あるいは、(2)定数の半径を持ち、与えられた2つの平行な直線と変換された3つめの与円に接する円、のどちらかでなくてはいけない。もういちど反転を行い、すべての円の半径をΔrずつ調整することで、元々の3つの与円に接する解円を得る。

ジェルゴンヌの解法[編集]

図9: 与円の2つの接点の2つの接線は2つの与円(ピンク)の根軸英語版 R 上で交わる。この R 上の3つの交点はそれぞれの黒の与円におけるそれぞれの青い接点と交わる線の極点英語版である。

ジェルゴンヌ(Gergonne)の解法は解円をペアとして考えるものである[1]。 ここで、ひとつの解円のペアを CA および CB とする(図6の2つのピンクの円)。そして、この解円のペアと3つの与円との接点をそれぞれ A1A2A3、および B1B2B3とする。ジェルゴンヌの解法はこれら6個の点の位置を特定することを狙いとしており、これら6個の点の位置を求めることによって2つの解円を導きだすことができる。

ジェルゴンヌはもし A1 および B1 が必ずその線上に存在するような直線 L1 を引くことのできるならば、この2点は L1 と与円 C1 の交点となるはずだと考えた(図6)。残った4つの接点の位置は同様に求めることができる。すなわち、A2 および B2 がその線上に存在する直線 L2、さらに A3 および B3 がその線上に存在する直線 L3 を求めるのである。このような直線 L1 を作図するためには、その線上に2点が存在しなくてはいけないが、この2点は接点であってはいけない。ジェルゴンヌはこのような3つのそれぞれの直線の2点を特定することに成功した。ただし、この2点のうち1点はすでに特定されていた。根心英語版 G は3つすべての直線上に存在するためである(図6)。

この求めるべき2点のうちの残りの1つ、L1L2L3 上の2つめの点の位置を求めるにあたって、ジェルゴンヌはこれら直線と解円 CA および CB の根軸 R との間の 相反関係英語版を指摘した。この相反性を理解するには、接点 A1 および B1 に引かれた C1 に対する2つの接線と解円を例に考えてみるとよい。これらの接線の交点は直線 L1C1 における極点英語版である。極点から接点 A1 および B1 までの距離は等しいため、この極点は解円の根軸 R 上にあるはずだということができる(図9)。このような極点と極線の関係は相反である。つまり、もし C1 における L1 の極が R 上に存在するのであれば、逆にC1 における R の極も L1 上に存在する。よって、もし R を引くことができれば、C1 における極 P1 を求めることができ、これは L1 上の求めるべき2点のうちの残りの1つを与える(図10)。

図10: 3つの与円(黒)における根軸 R の「極」の点(赤)。これらの極点は接点をつなぐ緑の直線上に存在する。 これらの直線はこれらの極および根心(オレンジ)から求めることができる。

ジェルゴンヌは未知の解円の根軸 R を次のように求めた。任意の円のペアは2つの相似の中心英語版を持つ。これら2点はこの2つの円に対する接線の2つの可能な交点である。よって、3つの与円は6つの相似の中心点を持つ。これら6つの点は4つの直線上に存在し、3つの点はそれぞれの直線上に存在する。さらに、 それぞれの直線は潜在的な解円のペアの根軸に対応している。 これを示すために、ジェルゴンヌは3つの与円のうち2つの円上の接点に相当する点を通る直線を考えた。例えば、この直線は A1/A2 によって定義され、またこの直線は B1/B2 によって定義される。ここで、 X3 を2円 C1 および C2 の相似の中点とする。すると、A1/A2 および B1/B2antihomologous英語版 な点のペアであり、そしてそれらの直線は X3 において交わる。これは距離の積が等しいことから従い、

この等式は X3 が2つの与円の根軸上に存在することを示唆している。同様の議論が他のペアの円にも成り立ち、3つの与えられた円の3つの相似の中点がそれぞれの解円のペアの根軸上に存在するということが言える。

要約すれば、求めるべき直線 L1 は2点から定義される。この2点とは、3つの与円の根心 G および相似中心を結ぶ4つの直線のうちの1つの C1 における極である。C2 および C3 における同様の極を求めることで、L2 および L3を得る。よって、すべての6つの点の位置を特定することができ、そしてそれら6つの点からはひとつの解円のペアが求めることができる。残った3つの相似中心線に対して同様の方法を繰り返すことで、さらに6つの解を得ることができ、計8つの解を与える。しかしながら、もし直線 Lk が一部のkに関して円 Ck に交わらないなら、そのような相似中心線に解のペアは存在しない。

注釈[編集]

  1. ^ 本項では与えられた円(Given circles)を ニアーイェシュ H. (1991). アポロニウスの問題の画法幾何学的解法. 25. 図学研究. p. 35. に従って与円と訳す。

参照文献[編集]

  1. ^ a b c d e Dörrie H (1965). “The Tangency Problem of Apollonius”. 100 Great Problems of Elementary Mathematics: Their History and Solutions. New York: Dover. pp. 154–160 (§32). 
  2. ^ a b c Coxeter HSM (1 January 1968). “The Problem of Apollonius”. The American Mathematical Monthly 75 (1): 5–15. doi:10.2307/2315097. ISSN 0002-9890. JSTOR 2315097. 
  3. ^ a b Julian Coolidge (1916). A Treatise on the Circle and the Sphere. Oxford: Clarendon Press. pp. 167–172. 
  4. ^ a b c Coxeter HSM, S. L. Greitzer (1967). Geometry Revisited. Washington: Mathematical Association of America. ISBN 978-0-88385-619-2. 
  5. ^ Coxeter, HSM (1969). Introduction to Geometry (2nd ed.). New York: Wiley. ISBN 978-0-471-50458-0. 
  6. ^ Needham, T (2007). Visual Complex Analysis. New York: Oxford University Press. pp. 140–141. ISBN 978-0-19-853446-4. 
  7. ^ Hofmann-Wellenhof B, Legat K, Wieser M, Lichtenegger H (2003). Navigation: Principles of Positioning and Guidance. Springer. ISBN 978-3-211-00828-7. 
  8. ^ Schmidt, RO (1972). “A new approach to geometry of range difference location”. IEEE Transactions on Aerospace and Electronic Systems AES-8 (6): 821–835. doi:10.1109/TAES.1972.309614. 
  9. ^ a b c Althiller-Court N (1961). “The problem of Apollonius”. The Mathematics Teacher 54: 444–452. 
  10. ^ Gabriel-Marie F (1912) (フランス語). Exercices de géométrie, comprenant l'exposé des méthodes géométriques et 2000 questions résolues. Tours: Maison A. Mame et Fils. pp. 18–20, 673–677. http://quod.lib.umich.edu/cgi/t/text/text-idx?c=umhistmath;idno=ACV3924. 
  11. ^ a b Pappus of Alexandria (1876). F Hultsch. ed (ラテン語). Pappi Alexandrini collectionis quae supersunt (3 volumes ed.). 
  12. ^ a b c d e Bruen A, Fisher JC, Wilker JB (1983). “Apollonius by Inversion”. Mathematics Magazine 56 (2): 97–103. doi:10.2307/2690380. JSTOR 2690380. 
  13. ^ a b Adriaan van Roomen (1596) (latin). Problema Apolloniacum quo datis tribus circulis, quaeritur quartus eos contingens, antea a…Francisco Vieta…omnibus mathematicis…ad construendum propositum, jam vero per Belgam…constructum. Würzburg: Typis Georgii Fleischmanni.  (ラテン語)
  14. ^ a b Isaac Newton (1974). DT Whiteside. ed. The Mathematical Papers of Isaac Newton, Volume VI: 1684–1691. Cambridge: Cambridge University Press. p. 164. ISBN 0-521-08719-8. 
  15. ^ a b Isaac Newton (1687). Philosophiæ Naturalis Principia Mathematica. Book I, Section IV, Lemma 16. 
  16. ^ Isaac Newton (1974). DT Whiteside. ed. The Mathematical Papers of Isaac Newton, Volume VI: 1684–1691. Cambridge: Cambridge University Press. pp. 162–165, 238–241. ISBN 0-521-08719-8. 
  17. ^ John Casey (mathematician) (1886) [1881]. A sequel to the first six books of the Elements of Euclid. Hodges, Figgis & co.. p. 122. ISBN 978-1-4181-6609-0. 
  18. ^ Courant R, Robbins H (1943). What is Mathematics? An Elementary Approach to Ideas and Methods. London: Oxford University Press. pp. 125–127, 161–162. ISBN 0-19-510519-2. 
  19. ^ Bold B (1982). Famous problems of geometry and how to solve them. Dover Publications. pp. 29–30. ISBN 0-486-24297-8. 
  20. ^ a b François Viète (1600). “Apollonius Gallus. Seu, Exsuscitata Apolloni Pergæi Περι Επαφων Geometria”. In Frans van Schooten (latin). Francisci Vietae Opera mathematica. ex officina B. et A. Elzeviriorum (Lugduni Batavorum). 1646. pp. 325–346. http://gallica.bnf.fr/ark:/12148/bpt6k107597d.r=.langEN.  (ラテン語)
  21. ^ Carl Benjamin Boyer (1991). “Apollonius of Perga”. A History of Mathematics (2nd ed.). John Wiley & Sons, Inc.. p. 322. ISBN 0-471-54397-7. 
  22. ^ Robert Simson|Simson R (1734) Mathematical Collection, volume VII, p. 117.
    Zeuthen HG (1886) (ドイツ語). Die Lehre von den Kegelschnitten im Altertum. Copenhagen: Unknown. pp. 381–383. 
    T. L. Heath. A History of Greek Mathematics, Volume II: From Aristarchus to Diophantus. Oxford: Clarendon Press. pp. 181–185, 416–417. 
  23. ^ Jean-Victor Poncelet (January 1811). “ジャン=ヴィクトル・ポンスレ” (フランス語). Correspondance sur l'École Impériale Polytechnique 2 (3): 271–273. 
  24. ^ Joseph Diaz Gergonne (1813–1814). “Recherche du cercle qui en touche trois autres sur une sphère” (フランス語). Ann. Math. Pures appl. 4. 
  25. ^ Julius Petersen (1879). Methods and Theories for the Solution of Problems of Geometrical Constructions, Applied to 410 Problems. London: Sampson Low, Marston, Searle & Rivington. pp. 94–95 (Example 403). 
  26. ^ a b c Zlobec BJ, Kosta NM (2001). “Configurations of Cycles and the Apollonius Problem”. Rocky Mountain Journal of Mathematics 31 (2): 725–744. doi:10.1216/rmjm/1020171586. 
  27. ^ Leonhard Euler (1790). “Solutio facilis problematis, quo quaeritur circulus, qui datos tres circulos tangat” (ラテン語) (PDF). Nova Acta Academiae Scientarum Imperialis Petropolitinae 6: 95–101. http://www.math.dartmouth.edu/~euler/docs/originals/E648.pdf.  Reprinted in Euler's Opera Omnia, series 1, volume 26, pp. 270–275.
  28. ^ a b Carl Friedrich Gauss (1873) (ドイツ語). Werke, 4. Band (reprinted in 1973 by Georg Olms Verlag (Hildesheim) ed.). Göttingen: Königlichen Gesellschaft der Wissenschaften. pp. 399–400. ISBN 3-487-04636-9. 
  29. ^ Lazare Carnot (1801) (フランス語). De la corrélation dans les figures de géométrie. Paris: Unknown publisher. pp. No. 158–159. 
    Lazare Carnot (1803) (フランス語). Géométrie de position. Paris: Unknown publisher. pp. 390, §334. 
  30. ^ Augustin Louis Cauchy (July 1806). “Du cercle tangent à trois cercles donnés” (フランス語). Correspondance sur l'École Polytechnique 1 (6): 193–195. 
  31. ^ Hoshen J (1996). “The GPS Equations and the Problem of Apollonius”. IEEE Transactions on Aerospace and Electronic Systems 32 (3): 1116–1124. doi:10.1109/7.532270. 
  32. ^ Altshiller-Court N (1952). College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle (2nd edition, revised and enlarged ed.). New York: Barnes and Noble. pp. 222–227. ISBN 978-0-486-45805-2. 
    Hartshorne, Robin (2000). Geometry: Euclid and Beyond. New York: Springer Verlag. pp. 346–355, 496, 499. ISBN 978-0-387-98650-0. 
    Rouché, Eugène; Ch de Comberousse (1883) (フランス語). Traité de géométrie (5th edition, revised and augmented ed.). Paris: Gauthier-Villars. pp. 252–256. OCLC 252013267. 
  33. ^ Coaklay GW (1860). “Analytical Solutions of the Ten Problems in the Tangencies of Circles; and also of the Fifteen Problems in the Tangencies of Spheres”. The Mathematical Monthly 2: 116–126. 
  34. ^ Daniel Pedoe (1970). “The missing seventh circle”. Elemente der Mathematik 25: 14–15. 
  35. ^ Knight RD (2005). “The Apollonius contact problem and Lie contact geometry”. Journal of Geometry 83: 137–152. doi:10.1007/s00022-005-0009-x. 
  36. ^ Salmon G (1879). A Treatise on Conic Sections, Containing an Account of Some of the Most Important Modern Algebraic and Geometric Methods. London: Longmans, Green and Co.. pp. 110–115, 291–292. ISBN 0-8284-0098-9. 
  37. ^ a b Johnson RA (1960). Advanced Euclidean Geometry: An Elementary treatise on the geometry of the Triangle and the Circle (reprint of 1929 edition by Houghton Mifflin ed.). New York: Dover Publications. pp. 117–121 (Apollonius' problem), 121–128 (Casey's and Hart's theorems). ISBN 978-0-486-46237-0. 
  38. ^ a b Ogilvy, C. S. (1990). Excursions in Geometry. Dover. pp. 48–51 (Apollonius' problem), 60 (extension to tangent spheres). ISBN 0-486-26530-7. 

発展資料[編集]

  • Boyd DW (1973). “The osculatory packing of a three-dimensional sphere”. Canadian J. Math. 25: 303–322. doi:10.4153/CJM-1973-030-5. 
  • Callandreau, Édouard (1949) (フランス語). Célèbres problèmes mathématiques. Paris: Albin Michel. pp. 219–226. OCLC 61042170. 
  • Camerer JG (1795) (ラテン語). Apollonii de Tactionibus, quae supersunt, ac maxime lemmata Pappi, in hos libros Graece nunc primum edita, e codicibus manuscriptis, cum Vietae librorum Apollonii restitutione, adjectis observationibus, computationibus, ac problematis Apolloniani historia. Gothae: Ettinger. 
  • Gisch D, Ribando JM (2004). “Apollonius' Problem: A Study of Solutions and Their Connections”. American Journal of Undergraduate Research 3: 15–25. http://www.ajur.uni.edu/v3n1/Gisch%20and%20Ribando.pdf. 
  • Pappus, Alexandrinus (1933). Pappus d'Alexandrie: La collection mathématique. Paris. OCLC 67245614.  Trans., introd., and notes by Paul Ver Eecke. (フランス語)
  • Simon M (1906) (ドイツ語). Über die Entwicklung der Elementargeometrie im XIX. Jahrhundert. Berlin: Teubner. pp. 97–105. 
  • Wells D (1991). The Penguin Dictionary of Curious and Interesting Geometry. New York: Penguin Books. pp. 3–5. ISBN 0-14-011813-6. 

関連項目[編集]

外部リンク[編集]