コンテンツにスキップ

「エピメテウス (衛星)」の版間の差分

出典: フリー百科事典『ウィキペディア(Wikipedia)』
削除された内容 追加された内容
m 分野名つき記事名の記事にはOtherusesは不要 (WP:D)
編集。
(他の1人の利用者による、間の4版が非表示)
1行目: 1行目:
{{出典の明記|date=2012年2月|ソートキー=星}}
{{天体 基本
{{天体 基本
| 幅 = 300px
| 幅 = 300px
9行目: 8行目:
| 画像説明 =
| 画像説明 =
| 画像背景色 =
| 画像背景色 =
| 仮符号・別名 =仮符号'''S/1980 S 3'''<br/>別名'''Saturn XI'''
| 仮符号・別名 =仮符号 '''S/1980 S 3'''<br/>(ほか多数)<br/>別名 '''Saturn XI'''
| 星座 =
| 星座 =
| 視等級 =
| 視等級 =
| 視直径 =
| 視直径 =
| 変光星型 =
| 変光星型 =
| 分類 =
| 分類 = [[土星の衛星]]
}}
}}
{{天体 発見
{{天体 発見
| 色 =衛星
| 色 =衛星
| 発見日 = [[1966年]][[12月18日]]
| 発見日 = [[1966年]]12月18日<ref name="NASA"/>
| 発見者 =リチャード・ウォーカー
| 発見者 = R・ウォーカー (1966年)<br/>S. M. Larson、<br/>J. W. Fountain (1978年)<ref name="NASA"/>
| 発見方法 =
| 発見方法 =
}}
}}
{{天体 軌道
{{天体 軌道
| 色 =衛星
| 色 =衛星
| 元期 =[[2003年]][[12月31日]]
| 元期 =[[2003年]]12月31日
| 平均距離 =
| 平均距離 =
| 平均距離対象 =
| 平均距離対象 =
| 平均公転半径 =
| 平均公転半径 =
| 平均直径 =
| 平均直径 =
| 軌道長半径 =151,410 ± 10 km
| 軌道長半径 = 151,410 ± 10 km<ref name="Spitale+2006"/>
| 近日点距離 =
| 近日点距離 =
| 遠日点距離 =
| 遠日点距離 =
| 離心率 =0.0098
| 離心率 = 0.0098<ref name="Spitale+2006"/>
| 公転周期 =0.694333517 日
| 公転周期 = 0.694333517 日<ref name="Spitale+2006"/>
| 会合周期 =
| 会合周期 =
| 軌道周期 =
| 軌道周期 =
| 平均軌道速度 =
| 平均軌道速度 =
| 軌道傾斜角 =0.351 ± 0.004°<br />土星赤道に対する)
| 軌道傾斜角 = 0.351&deg;±0.004&deg;<br/>(土星赤道)<ref name="Spitale+2006"/>
| 近日点引数 =
| 近日点引数 = 88.975&deg;<ref name="jplssd"/>
| 昇交点黄経 =
| 昇交点黄経 = 192.762&deg;<ref name="jplssd"/>
| 平均近点角 =
| 平均近点角 = 80.377&deg;<ref name="jplssd"/>
| 前回近日点通過 =
| 前回近日点通過 =
| 次回近日点通過 =
| 次回近日点通過 =
48行目: 47行目:
| 色 =衛星
| 色 =衛星
| 赤道直径 =
| 赤道直径 =
| 直径 =135 × 108 × 105 km
| 直径 =
| 三軸径 = 129.8 × 114 × 106.2 km<ref name="Thomas2010"/>
| 半径 =57 ± 3 km
| 半径 =
| 表面積 =~40,000 km²
| 平均半径 = 58.1 ± 1.8 km<ref name="Thomas2010"/>
| 体積 =~760,000 km³
| 質量 =5.304 ± 0.013 ×10<sup>17</sup> kg
| 表面積 = ~40,000 km<sup>2</sup>
| 体積 = ~821,518 km<sup>3</sup><ref name="NASA"/>
| 質量 = (5.266 ± 0.006) {{e|17}} kg<ref name="Thomas2010"/>
| 相対対象(または、相対対象1) =
| 相対対象(または、相対対象1) =
| 相対質量(または、相対質量1) =
| 相対質量(または、相対質量1) =
| 相対対象2 =
| 相対対象2 =
| 相対質量2 =
| 相対質量2 =
| 平均密度 =0.69 ± 0.11 g/cm³
| 平均密度 = 0.640 ± 0.062 g/cm<sup>3</sup><ref name="Thomas2010"/>
| 表面重力 =~0.0078 m/s<sup>2</sup>
| 表面重力 = 0.0064–0.011 m/s<sup>2</sup><ref name="Thomas2010"/>
| 脱出速度 =~0.032 km/s
| 脱出速度 = ~0.032 km/s
| 自転周期 =
| 自転周期 = 公転周期と同期
| スペクトル分類 =
| スペクトル分類 =
| 絶対等級 =
| 絶対等級 =
| 光度 =
| 光度 =
| 光度係数 =
| 光度係数 =
| アルベド =0.73 ± 0.03
| アルベド = 0.73 ± 0.03<ref name="Verbiscer+2007"/>
| 赤道傾斜角 =
| 赤道傾斜角 =
| 表面温度 = ~78 K
| 表面温度 = ~78 K
83行目: 84行目:
| 色 =衛星
| 色 =衛星
}}
}}
'''エピメテウス'''(Saturn XI Epimetheus)は、[[土星]]の第11[[土星の衛星|衛星]]である。同時期に発見された土星の第10衛星[[ヤヌス (衛星)|ヤヌス]]と軌道を共有する特殊な状態にあることが知られている。
'''エピメテウス'''([[英語]]:Epimetheus、確定番号:'''Saturn XI''')は、[[土星]]の[[衛星]]のひとつ。[[1966年]][[12月15日]]に[[オドゥワン・ドルフュス|ドルフュス]]が最初に観測し、3日後の18日にウォーカー(R. Walker)、ラーソン(S.Larson)、ファウンテン(J. Fountain)らが最終確認したことで、公式にその存在が認められた。より直接的な観測としては、[[1980年]]に[[ボイジャー1号]]がその所在を確認している。[[仮符号]]はS/1980 S 3。


== 発見の経緯 ==
名前は[[ギリシア神話]]における[[ティーターン]]のひとり[[エピメーテウス|エピメテウス]]にちなんで名づけられた。
=== 発見とヤヌスとの混同 ===
2つの衛星が軌道を共有し合うという特殊な状態にあることから、エピメテウスの発見は複雑な経緯をたどっている。


まず、[[1966年]]12月15日に[[オドゥワン・ドルフュス]]が新たな衛星と思われる天体を発見し、その後16、17日にも検出に成功している<ref name="Gingerich1967"/>。この発見は[[国際天文学連合]]のサーキュラーで翌[[1967年]]1月3日に公表されている。ドルフュスはその後もこの衛星を観測し続けており、衛星の名称として「ヤヌス」を提案している<ref name="Gingerich1967c"/>。
土星からの平均距離は、15万1415km。[[公転周期]]、[[自転周期]]はともに16時間である。直径約114kmの氷と岩石の塊で、表面には[[クレーター]]が広範囲に分布し、また大小の山脈や渓谷が存在する。

一方でドルフュスが初めて検出した3日後の1966年12月18日に、リチャード・ウォーカーが同様の観測によって土星の衛星と思われる天体を発見し、翌1967年1月6日に国際天文学連合のサーキュラーで公表された<ref name="Gingerich1967b"/>。この時に発見された天体こそが現在エピメテウスとして知られている衛星であるが、当時は同じ軌道には一つの衛星しか存在していないと考えられたため、この天体はドルフュスが発見した衛星 (ドルフュスの提案に伴い非公式にヤヌスと呼ばれていた) と同一の天体だと考えられた<ref name="NASA"/>。

しかし検出報告から12年後の[[1978年]]になって、Stephen M. Larson と John W. Fountain によって1966年の一連の観測結果は非常に似た軌道上にある別々の天体によってうまく説明できることが示された<ref name=Fountain+Larson1978/>。[[1980年]]の[[ボイジャー1号]]の観測によってこの結果が裏付けられ<ref name="Leverington2003"/>、Larson と Fountain はウォーカーと並んで公式にエピメテウスの発見者に名前を連ねることとなった<ref name="NASA"/>。

=== その他の「発見」 ===
1979年から1980年にかけて多数の土星の衛星の発見が報告されたが、そのうちの多くが後に同一の天体であることが判明している。エピメテウスもこの時期に複数回「発見」されている。1979年には[[パイオニア11号]]の観測によって、エピメテウスだと思われる天体の2枚の写真が撮影され、'''S/1979 S 1''' という仮符号が与えられている。ただし観測の不定性が大きく、信頼性の高い軌道を計算することはできなかった<ref name="Ulivi2007"/>。また、エピメテウスと同一だろうという推測はされているものの、確定はしていない<ref name="Marsden1980c"/>。

1980年2月26日に[[ハワイ大学システム|ハワイ大学]]の Dale Cruikshank によって新しい衛星の発見が報告され、'''S/1980 S 3''' という仮符号が与えられた<ref name="Marsden1980"/>。この衛星は後にウォーカーが発見した衛星と同一であることが確認されており、国際天文学連合の天体の命名に関するワーキンググループでは、Cruikshank もエピメテウスの発見者として扱われている<ref name="planetarynames"/>。

その他にも、1980年のうちに S/1980 S 4、S/1980 S 5、S/1980 S 8、S/1980 S 11、S/1980 S 15、S/1980 S 16、S/1980 S 17、S/1980 S 19 の発見が報告されているが、これらは全てエピメテウスと同一の天体であることが判明している<ref name="Marsden1980b"/><ref name="Marsden1980c"/>。

== 名称 ==
エピメテウスの名前は、[[ギリシア神話]]における[[ティーターン]]のひとり[[エピメーテウス]]にちなんで名付けられた<ref name="NASA"/>。同じく土星の衛星名の由来となった[[プロメーテウス]]の弟である。正式に命名されたのは[[1983年]]9月30日であり、同時に '''Saturn XI''' という確定番号も与えられている<ref name="Marsden1983"/>。

発見の節で触れたとおり発見当初はヤヌスと同じ天体だと考えられていたため、非公式にヤヌスと呼ばれていた。また複数の仮符号を持っている。なお、ヤヌスの名称もエピメテウスの命名と同時に国際天文学連合に承認されている<ref name="Marsden1983"/>。


== ヤヌスとの軌道の共有 ==
== ヤヌスとの軌道の共有 ==
[[File:JanusEpimetheus.gif|thumb|left|250px|ヤヌスとエピメテウスの軌道の交換。互いに接近するタイミングでお互いの軌道を入れ替える。]]
[[ファイル:JanusEpimetheus.gif|thumb|right|250px|ヤヌスとエピメテウスの軌道の交換。互いに接近する4年ごとにお互いの軌道を入れ替えている。]]
[[ファイル:Epimetheus-Janus Orbit.png|thumb|right|250px|[[回転座標系]]に乗って描写したヤヌスとエピメテウスの{{仮リンク|馬蹄型軌道|en|horseshoe orbit}}。]]
エピメテウスは[[ヤヌス (衛星)|ヤヌス]]と[[公転]]軌道を共有している。ヤヌスとエピメテウスの軌道の半径は、平均して50kmしか離れていない。これは衛星の直径より小さい。内側を周回する衛星の方が公転速度が速いため、しだいに外側の衛星に追いついていく。そのままでは衝突してしまうように思われるが、数万kmまで接近すると、内側を回っていた衛星は外側の衛星の[[重力]]による外向きの力を受けて外側の軌道に移る。同時に、外側の衛星は内側の衛星から内向きの力を受けて内側の軌道に落ち込む。2つの衛星が軌道を「交換」すると、追いつかれそうになった衛星が他方を引き離すように公転を続けるので2つの衛星は衝突しない。
[[ファイル:PIA08170 Epimetheus and Janus.jpg|thumb|right|250px|エピメテウス (左下) とヤヌス (右上)。軌道を交換した2ヶ月後の2006年3月20日に[[カッシーニ (探査機)|カッシーニ]]が撮影したもの。両者は実際には4万kmほど離れているが、短縮遠近法の影響で近接して見えている。]]
エピメテウスは[[ヤヌス (衛星)|ヤヌス]]と[[公転]]軌道を共有している。ヤヌスとエピメテウスの軌道の半径は、平均して 50 km しか離れておらず、これは衛星の直径より小さい<ref name="Spitale+2006"/><ref name="Thomas2010"/>。内側を周回する衛星の方が公転速度が速く、一日あたりおよそ 0.25&deg; だけ外側の衛星より先に進むため、次第に外側の衛星に追いついていく。内側の衛星はそのままでは衝突してしまうように思われるが、数万kmまで接近すると重力相互作用により、内側の衛星の運動量が増加し、逆に外側の衛星の運動量は減少する。


直感的に解釈すると、内側の衛星が外側の衛星に追い付きそうになった時、公転方向の前方にいる外側の衛星からの重力に引かれて運動量が増加し、その結果として軌道半径は大きくなる。逆に外側の衛星は追いついてきた内側の衛星から公転方向後方に引かれることになるため運動量が減少し、軌道半径は小さくなる。その結果、内側の衛星と外側の衛星が軌道を「交換」することとなる。追いつかれそうになった衛星は内側の軌道へ移って公転速度が大きくなり、追いつきそうになった衛星は外側の軌道へ移って公転速度が小さくなるため、2つの衛星は再び離れていくことになる。このため、両者の距離は1万kmより接近することはない。エピメテウスとヤヌスはこのような軌道の交換を繰り返し、衝突することなく安定に公転している。両者が遭遇する度に、エピメテウスの軌道半径は約 80 km、ヤヌスの軌道半径は約 20 km 変化する。変化量が異なる理由は、ヤヌスがエピメテウスよりも4倍ほど質量が大きく、軌道の変化の影響を受けにくいためである。
2つの衛星が軌道を交換してから約4年で、再び内側の衛星が外側の衛星に追いつき軌道の交換が起こるため、軌道の交換は約4年ごとに起こる。最近では[[2006年]][[1月21日]]に起こっている。こういった軌道共有関係にある衛星は、[[2009年]]現在で他に見つかっていない。


2つの衛星が軌道を交換してから約4年で、再び内側の衛星が外側の衛星に追いつき軌道の交換が起こるため、軌道の交換は約4年ごとに起こる。例えば最近では[[2006年]]1月21日に確認されており<ref name="DancingMoon"/>、2010年、2014年、2018年に発生する。こういった軌道共有関係にある太陽系内の天体は、他には発見されていない<ref name="ElMoutamid+2016"/>。
== 関連項目 ==

* [[土星の衛星と環]]
この軌道の「交換」という現象は、[[軌道力学]]の観点から見るとエピメテウスとヤヌスが 1:1 の[[軌道共鳴|平均運動共鳴]]を起こしていることを意味する<ref name="NAOJ_koyomi"/>。[[三体問題|円制限三体問題]]において土星を中心天体とし、同程度の質量を持つ天体2つが円軌道で公転しているという状況である。土星を中心とした適切な[[角速度]]の[[回転座標系]]に乗ってエピメテウスとヤヌスの運動を記述すると、両者は自身の馬蹄型軌道を往復する運動を行っていることが分かる (図参照)。

お互いの馬蹄型軌道の先端で遭遇して運動量をやり取りして引き返していく様子が、実効的に軌道を「交換」している状態に相当する。先述の軌道半径の変化の違いも、エピメテウスとヤヌスの質量の違いを反映した馬蹄型軌道の大きさの違いに対応している。両者の質量が同じであれば馬蹄型軌道は回転座標系で見て対称な形状となり、遭遇の度の軌道半径の変化量もお互いに同じになる。一方で片方が極端に重い場合は重い天体の馬蹄型軌道は極めて小さくなり、回転座標系では軽い天体が 360&deg; に及ぶ馬蹄型軌道を往復するような運動をすることになる。この場合は軌道を「交換」しているというよりは、慣性系で見ると軽い天体が重い天体に接近する度に内側の軌道と外側の軌道を行き来しているような運動をすることになる。

== 物理的特徴 ==
エピメテウスの表面には直径 30 km を超える複数の[[クレーター]]と、大小さまざまな尾根のような構造 (ridge) と溝 (groove) が発見されている。エピメテウスとヤヌスは共通の母天体の破壊によって形成されたとする考えがある。もしこれが正しい場合、破壊は惑星・衛星形成の初期段階で発生したはずである。これは表面のクレーターから推定されるエピメテウスとヤヌスの表面は非常に古いというのが根拠である<ref name="NASA"/>。

天体の大部分は氷で出来ていると考えられるが、エピメテウスの平均密度は 0.640 g/cm<sup>3</sup>であり<ref name="Thomas2010"/>、これは氷の密度よりも低い。そのためエピメテウスは、衝突で発生した破片が重力でゆるく集まって出来た[[ラブルパイル天体]]であると考えられる<ref name="NASA"/>。アルベドが非常に高い値であることも、この天体の主成分が氷であることを支持している<ref name="Verbiscer+2007"/>。

南極部分には南半球全体に及ぶ衝突クレーターの痕跡と思われる特徴が見られ、南半球がいくらか潰れたような形状をしている原因である可能性がある。エピメテウス表面で見られる地形には2種類あり、滑らかで暗い表面の領域と、明るくわずかに黄色っぽい破砕された領域である。表面の差異の解釈としては、暗い領域の物質は斜面を滑り落ち、明るい領域よりも氷の含有量が少ない岩盤のような部分が見えているという説がある<ref name="NASA"/>。

== 土星の環との関係 ==
[[2006年]]の土星探査機[[カッシーニ (探査機)|カッシーニ]]による前方散乱光の観測で、エピメテウスとヤヌスが公転している領域に[[土星の環#ヤヌス/エピメテウス環|薄い塵の環]]が存在することが判明した。この環は半径方向に 5,000 km ほどの広がりを持っている<ref name="MoonMadeRings"/>。この環は、エピメテウスとヤヌスの表面への隕石衝突によって発生した塵が公転軌道周辺にばらまかれた結果として形成されていると考えられる<ref name="Cassini_eclipse2"/><ref name="AstroArts"/>。

また、エピメテウスはヤヌスと共に[[土星の環]]の[[土星の環#A環|A環]]の維持に関与していることが分かっている。両者は共にA環からはやや離れているが、7:6 の軌道共鳴によってA環の明瞭な縁を形作っていると考えられている<ref name="Lakdawalla2007"/>。共鳴を起こす軌道は「内側の軌道」であり、質量の大きいヤヌスが内側の軌道にいる時の方がこの影響が顕著である<ref name="ElMoutamid+2016"/>。

== 出典 ==
{{reflist|2|refs=
<ref name="Spitale+2006">{{cite journal| doi = 10.1086/505206| last1 = Spitale| first1 = J. N.| last2 = Jacobson| first2 = R. A.| last3 = Porco| first3 = C. C.| last4 = Owen| first4 = W. M., Jr.| year = 2006| title = The orbits of Saturn's small satellites derived from combined historic and ''Cassini'' imaging observations| journal = The Astronomical Journal| volume = 132| issue = 2| pages = 692–710| url = http://iopscience.iop.org/1538-3881/132/2/692/pdf/1538-3881_132_2_692.pdf| pmid = | pmc = | bibcode = 2006AJ....132..692S}}</ref>

<ref name="Thomas2010">{{cite journal| doi = 10.1016/j.icarus.2010.01.025| last1 = Thomas| first1 = P. C.| date = July 2010| title = Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission| journal = Icarus| volume = 208| issue = 1| pages = 395–401| pmid = | pmc = | url = http://www.ciclops.org/media/sp/2011/6794_16344_0.pdf| bibcode = 2010Icar..208..395T}}</ref>

<ref name="jplssd">{{Cite web |author=Jet Propulsion Laboratory |date=2013-08-23 |url=https://ssd.jpl.nasa.gov/?sat_elem |title=Planetary Satellite Mean Orbital Parameters |website=Jet Propulsion Laboratory Solar System Dynamics |publisher=[[ジェット推進研究所]] |accessdate=2018-11-24}}</ref>

<ref name="NASA">{{cite web | url = https://solarsystem.nasa.gov/moons/saturn-moons/epimetheus/in-depth/ | title = In Depth &#124; Epimetheus – Solar System Exploration: NASA Science | author = NASA | date = 2017-12-05 | format = | work = | publisher = [[アメリカ航空宇宙局]] | pages = | language = | archiveurl = | archivedate = | quote = | accessdate = 2018-11-24 }}</ref>

<ref name="Verbiscer+2007">{{cite journal| doi = 10.1126/science.1134681| last1 = Verbiscer| first1 = A.| last2 = French| first2 = R.| last3 = Showalter| first3 = M.| last4 = Helfenstein| first4 = P.| title = Enceladus: Cosmic Graffiti Artist Caught in the Act| journal = Science| volume = 315| issue = 5813| page = 815| date = 2007-02-09| pmid = 17289992| bibcode = 2007Sci...315..815V| ref = {{sfnRef|Verbiscer French et al.|2007}}| url = http://www.sciencemag.org/content/315/5813/815.abstract| accessdate = 2011-12-20}}</ref>

<ref name="Gingerich1967">{{cite web | url = http://www.cbat.eps.harvard.edu/iauc/01900/01987.html | title = IAUC 1987: Prob. NEW Sat OF SATURN; 1966e; 1965d | author = Owen Gingerich | authorlink = | coauthors = | date = 1967-01-03 | format = | work = Central Bureau for Astronomical Telegrams | publisher = [[国際天文学連合]] | pages = | language = | archiveurl = | archivedate = | quote = | accessdate = 2018-11-25}}</ref>

<ref name="Gingerich1967b">{{cite web | url = http://www.cbat.eps.harvard.edu/iauc/01900/01991.html | title = IAUC 1991: 1967a; Poss. NEW Sat OF SATURN | author = Owen Gingerich | authorlink = | coauthors = | date = 1967-01-06 | format = | work = Central Bureau for Astronomical Telegrams | publisher = [[国際天文学連合]] | pages = | language = | archiveurl = | archivedate = | quote = | accessdate = 2018-11-25}}</ref>

<ref name="Gingerich1967c">{{cite web | url = http://www.cbat.eps.harvard.edu/iauc/01900/01995.html | title = IAUC 1995: SATURN X (JANUS); DEFINITIVE ORBITS OF COMETS; 1967a | author = Owen Gingerich | authorlink = | coauthors = | date = 1967-02-01 | format = | work = Central Bureau for Astronomical Telegrams | publisher = [[国際天文学連合]] | pages = | language = | archiveurl = | archivedate = | quote = | accessdate = 2018-11-25}}</ref>

<ref name=Fountain+Larson1978>{{cite journal| doi = 10.1016/0019-1035(78)90076-3| last1 = Fountain| first1 = J. W.| last2 = Larson| first2 = S. M.| year = 1978| title = Saturn's ring and nearby faint satellites| journal = Icarus| volume = 36| pages = 92–106| pmid = | pmc = | bibcode = 1978Icar...36...92F}}</ref>

<ref name="Leverington2003">{{cite book
| last = Leverington
| first = David
| year = 2003
| title = Babylon to Voyager and beyond: a history of planetary astronomy
| publisher = [[ケンブリッジ大学出版局]]
| isbn = 0-521-80840-5
| url = https://books.google.com/?id=6Hpi202ybn8C&pg=PA454
}}</ref>

<ref name="Ulivi2007">{{cite book |last1=Ulivi |first1=Paolo |last2=Harland |first2= David M |date=2007 |title=Robotic Exploration of the Solar System Part I: The Golden Age 1957-1982 |publisher=[[シュプリンガー・サイエンス・アンド・ビジネス・メディア|シュプリンガー]] |page=150 |isbn=9780387493268 }}</ref>

<ref name="Marsden1980">{{cite web | url = http://www.cbat.eps.harvard.edu/iauc/03400/03457.html | title = IAUC 3457: SATURN | author = Brian G. Marsden | authorlink = | coauthors = | date = 1980-03-06 | format = | work = Central Bureau for Astronomical Telegrams | publisher = [[国際天文学連合]] | pages = | language = | archiveurl = | archivedate = | quote = | accessdate = 2018-11-25}}</ref>

<ref name="planetarynames">{{Cite web
|url=https://planetarynames.wr.usgs.gov/Page/Planets#JovianSystem
|title=Planet and Satellite Names and Discoverers
|work=Planetary Names
|publisher=[[国際天文学連合]]
|accessdate=2018-11-25}}</ref>

<ref name="Marsden1980b">{{cite web | url = http://www.cbat.eps.harvard.edu/iauc/03400/03463.html | title = IAUC 3463: Sats OF SATURN | author = Brian G. Marsden | authorlink = | coauthors = | date = 1980-03-31 | format = | work = Central Bureau for Astronomical Telegrams | publisher = [[国際天文学連合]] | pages = | language = | archiveurl = | archivedate = | quote = | accessdate = 2018-11-25}}</ref>

<ref name="Marsden1980c">{{cite web | url = http://www.cbat.eps.harvard.edu/iauc/03400/03483.html | title = IAUC 3483: Sats OF SATURN | author = Brian G. Marsden | authorlink = | coauthors = | date = 1980-06-06 | format = | work = Central Bureau for Astronomical Telegrams | publisher = [[国際天文学連合]] | pages = | language = | archiveurl = | archivedate = | quote = | accessdate = 2018-11-25}}</ref>

<ref name="Marsden1983">{{cite web | url = http://www.cbat.eps.harvard.edu/iauc/03800/03872.html | title = IAUC 3872: GX 1+4; Sats OF JUPITER AND SATURN | author = Brian G. Marsden | authorlink = | coauthors = | date = 1983-09-30 | format = | work = Central Bureau for Astronomical Telegrams | publisher = [[国際天文学連合]] | pages = | language = | archiveurl = | archivedate = | quote = | accessdate = 2018-11-25}}</ref>

<ref name="NAOJ_koyomi">{{cite web | url = https://eco.mtk.nao.ac.jp/koyomi/wiki/B6A6CCC4.html | title = 暦Wiki/共鳴 - 国立天文台暦計算室 | author = | authorlink = | coauthors = | date = | format = | work = 暦計算室 | publisher = [[国立天文台]] | pages = | language = | archiveurl = | archivedate = | quote = | accessdate = 2018-11-25}}</ref>

<ref name="DancingMoon">{{cite web
| title = The Dancing Moons
| date = 2006-05-03
| work = Cassini Solstice Mission
| publisher = [[ジェット推進研究所]]
| url = http://saturn.jpl.nasa.gov/photos/imagedetails/index.cfm?imageID=2103
| accessdate = 2011-12-29
}}</ref>

<ref name="ElMoutamid+2016">{{cite journal |last1=El Moutamid |first1=Maryame |last2=Nicholson |first2=Philip D. |last3=French |first3=Richard G. |last4=Tiscareno |first4=Matthew S. |last5=Murray |first5=Carl D. |last6=Evans |first6=Michael W. |last7=French |first7=Colleen McGhee |last8=Hedman |first8=Matthew M. |last9=Burns |first9=Joseph A. |title=How Janus’ orbital swap affects the edge of Saturn’s A ring? |journal=Icarus |volume=279 |year=2016 |pages=125–140 |issn=00191035 |doi=10.1016/j.icarus.2015.10.025}}</ref>

<ref name="MoonMadeRings">{{cite web
| title = PIA08328: Moon-Made Rings
| date = 2006-10-11
| work = Photojournal
| publisher = [[ジェット推進研究所]]
| url = http://photojournal.jpl.nasa.gov/catalog/PIA08328
| accessdate = 2011-12-29
}}</ref>

<ref name="Cassini_eclipse2">Cassini-Huygens press release [http://saturn.jpl.nasa.gov/news/press-release-details.cfm?newsID=698 NASA Finds Saturn's Moons May Be Creating New Rings] {{webarchive|url=https://web.archive.org/web/20061016081210/http://saturn.jpl.nasa.gov/news/press-release-details.cfm?newsID=698 |date=2006-10-16 }}、2006年10月11日</ref>

<ref name="AstroArts">{{cite web | url = https://www.astroarts.co.jp/article/hl/a/8836_cassini | title = 「カッシーニ」、土星の環をかすめるコースの飛行を開始 - アストロアーツ | author = | authorlink = | coauthors = | date = 2016-12-08 | format = | work = | publisher = [[アストロアーツ]] | pages = | language = | archiveurl = | archivedate = | quote = | accessdate = 2018-11-25}}</ref>

<ref name="Lakdawalla2007">{{cite web
| last = Lakdawalla
| first = Emily
| date = 2007-06-13
| title = Funny little Atlas
| work = The Planetary Society weblog
| url = http://www.planetary.org/blog/article/00001003/
| accessdate = 2011-12-30
}}
</ref>
}}


{{土星の衛星}}
{{土星の衛星}}

2018年12月31日 (月) 02:39時点における版

エピメテウス
Epimetheus
仮符号・別名 仮符号 S/1980 S 3
(ほか多数)
別名 Saturn XI
分類 土星の衛星
発見
発見日 1966年12月18日[1]
発見者 R・ウォーカー (1966年)
S. M. Larson、
J. W. Fountain (1978年)[1]
軌道要素と性質
元期:2003年12月31日
軌道長半径 (a) 151,410 ± 10 km[2]
離心率 (e) 0.0098[2]
公転周期 (P) 0.694333517 日[2]
軌道傾斜角 (i) 0.351°±0.004°
(土星の赤道)[2]
近日点引数 (ω) 88.975°[3]
昇交点黄経 (Ω) 192.762°[3]
平均近点角 (M) 80.377°[3]
土星の衛星
物理的性質
三軸径 129.8 × 114 × 106.2 km[4]
平均半径 58.1 ± 1.8 km[4]
表面積 ~40,000 km2
体積 ~821,518 km3[1]
質量 (5.266 ± 0.006) ×1017 kg[4]
平均密度 0.640 ± 0.062 g/cm3[4]
表面重力 0.0064–0.011 m/s2[4]
脱出速度 ~0.032 km/s
自転周期 公転周期と同期
アルベド(反射能) 0.73 ± 0.03[5]
表面温度 ~78 K
Template (ノート 解説) ■Project

エピメテウス(Saturn XI Epimetheus)は、土星の第11衛星である。同時期に発見された土星の第10衛星ヤヌスと軌道を共有する特殊な状態にあることが知られている。

発見の経緯

発見とヤヌスとの混同

2つの衛星が軌道を共有し合うという特殊な状態にあることから、エピメテウスの発見は複雑な経緯をたどっている。

まず、1966年12月15日にオドゥワン・ドルフュスが新たな衛星と思われる天体を発見し、その後16、17日にも検出に成功している[6]。この発見は国際天文学連合のサーキュラーで翌1967年1月3日に公表されている。ドルフュスはその後もこの衛星を観測し続けており、衛星の名称として「ヤヌス」を提案している[7]

一方でドルフュスが初めて検出した3日後の1966年12月18日に、リチャード・ウォーカーが同様の観測によって土星の衛星と思われる天体を発見し、翌1967年1月6日に国際天文学連合のサーキュラーで公表された[8]。この時に発見された天体こそが現在エピメテウスとして知られている衛星であるが、当時は同じ軌道には一つの衛星しか存在していないと考えられたため、この天体はドルフュスが発見した衛星 (ドルフュスの提案に伴い非公式にヤヌスと呼ばれていた) と同一の天体だと考えられた[1]

しかし検出報告から12年後の1978年になって、Stephen M. Larson と John W. Fountain によって1966年の一連の観測結果は非常に似た軌道上にある別々の天体によってうまく説明できることが示された[9]1980年ボイジャー1号の観測によってこの結果が裏付けられ[10]、Larson と Fountain はウォーカーと並んで公式にエピメテウスの発見者に名前を連ねることとなった[1]

その他の「発見」

1979年から1980年にかけて多数の土星の衛星の発見が報告されたが、そのうちの多くが後に同一の天体であることが判明している。エピメテウスもこの時期に複数回「発見」されている。1979年にはパイオニア11号の観測によって、エピメテウスだと思われる天体の2枚の写真が撮影され、S/1979 S 1 という仮符号が与えられている。ただし観測の不定性が大きく、信頼性の高い軌道を計算することはできなかった[11]。また、エピメテウスと同一だろうという推測はされているものの、確定はしていない[12]

1980年2月26日にハワイ大学の Dale Cruikshank によって新しい衛星の発見が報告され、S/1980 S 3 という仮符号が与えられた[13]。この衛星は後にウォーカーが発見した衛星と同一であることが確認されており、国際天文学連合の天体の命名に関するワーキンググループでは、Cruikshank もエピメテウスの発見者として扱われている[14]

その他にも、1980年のうちに S/1980 S 4、S/1980 S 5、S/1980 S 8、S/1980 S 11、S/1980 S 15、S/1980 S 16、S/1980 S 17、S/1980 S 19 の発見が報告されているが、これらは全てエピメテウスと同一の天体であることが判明している[15][12]

名称

エピメテウスの名前は、ギリシア神話におけるティーターンのひとりエピメーテウスにちなんで名付けられた[1]。同じく土星の衛星名の由来となったプロメーテウスの弟である。正式に命名されたのは1983年9月30日であり、同時に Saturn XI という確定番号も与えられている[16]

発見の節で触れたとおり発見当初はヤヌスと同じ天体だと考えられていたため、非公式にヤヌスと呼ばれていた。また複数の仮符号を持っている。なお、ヤヌスの名称もエピメテウスの命名と同時に国際天文学連合に承認されている[16]

ヤヌスとの軌道の共有

ヤヌスとエピメテウスの軌道の交換。互いに接近する4年ごとにお互いの軌道を入れ替えている。
回転座標系に乗って描写したヤヌスとエピメテウスの馬蹄型軌道英語版
エピメテウス (左下) とヤヌス (右上)。軌道を交換した2ヶ月後の2006年3月20日にカッシーニが撮影したもの。両者は実際には4万kmほど離れているが、短縮遠近法の影響で近接して見えている。

エピメテウスはヤヌス公転軌道を共有している。ヤヌスとエピメテウスの軌道の半径は、平均して 50 km しか離れておらず、これは衛星の直径より小さい[2][4]。内側を周回する衛星の方が公転速度が速く、一日あたりおよそ 0.25° だけ外側の衛星より先に進むため、次第に外側の衛星に追いついていく。内側の衛星はそのままでは衝突してしまうように思われるが、数万kmまで接近すると重力相互作用により、内側の衛星の運動量が増加し、逆に外側の衛星の運動量は減少する。

直感的に解釈すると、内側の衛星が外側の衛星に追い付きそうになった時、公転方向の前方にいる外側の衛星からの重力に引かれて運動量が増加し、その結果として軌道半径は大きくなる。逆に外側の衛星は追いついてきた内側の衛星から公転方向後方に引かれることになるため運動量が減少し、軌道半径は小さくなる。その結果、内側の衛星と外側の衛星が軌道を「交換」することとなる。追いつかれそうになった衛星は内側の軌道へ移って公転速度が大きくなり、追いつきそうになった衛星は外側の軌道へ移って公転速度が小さくなるため、2つの衛星は再び離れていくことになる。このため、両者の距離は1万kmより接近することはない。エピメテウスとヤヌスはこのような軌道の交換を繰り返し、衝突することなく安定に公転している。両者が遭遇する度に、エピメテウスの軌道半径は約 80 km、ヤヌスの軌道半径は約 20 km 変化する。変化量が異なる理由は、ヤヌスがエピメテウスよりも4倍ほど質量が大きく、軌道の変化の影響を受けにくいためである。

2つの衛星が軌道を交換してから約4年で、再び内側の衛星が外側の衛星に追いつき軌道の交換が起こるため、軌道の交換は約4年ごとに起こる。例えば最近では2006年1月21日に確認されており[17]、2010年、2014年、2018年に発生する。こういった軌道共有関係にある太陽系内の天体は、他には発見されていない[18]

この軌道の「交換」という現象は、軌道力学の観点から見るとエピメテウスとヤヌスが 1:1 の平均運動共鳴を起こしていることを意味する[19]円制限三体問題において土星を中心天体とし、同程度の質量を持つ天体2つが円軌道で公転しているという状況である。土星を中心とした適切な角速度回転座標系に乗ってエピメテウスとヤヌスの運動を記述すると、両者は自身の馬蹄型軌道を往復する運動を行っていることが分かる (図参照)。

お互いの馬蹄型軌道の先端で遭遇して運動量をやり取りして引き返していく様子が、実効的に軌道を「交換」している状態に相当する。先述の軌道半径の変化の違いも、エピメテウスとヤヌスの質量の違いを反映した馬蹄型軌道の大きさの違いに対応している。両者の質量が同じであれば馬蹄型軌道は回転座標系で見て対称な形状となり、遭遇の度の軌道半径の変化量もお互いに同じになる。一方で片方が極端に重い場合は重い天体の馬蹄型軌道は極めて小さくなり、回転座標系では軽い天体が 360° に及ぶ馬蹄型軌道を往復するような運動をすることになる。この場合は軌道を「交換」しているというよりは、慣性系で見ると軽い天体が重い天体に接近する度に内側の軌道と外側の軌道を行き来しているような運動をすることになる。

物理的特徴

エピメテウスの表面には直径 30 km を超える複数のクレーターと、大小さまざまな尾根のような構造 (ridge) と溝 (groove) が発見されている。エピメテウスとヤヌスは共通の母天体の破壊によって形成されたとする考えがある。もしこれが正しい場合、破壊は惑星・衛星形成の初期段階で発生したはずである。これは表面のクレーターから推定されるエピメテウスとヤヌスの表面は非常に古いというのが根拠である[1]

天体の大部分は氷で出来ていると考えられるが、エピメテウスの平均密度は 0.640 g/cm3であり[4]、これは氷の密度よりも低い。そのためエピメテウスは、衝突で発生した破片が重力でゆるく集まって出来たラブルパイル天体であると考えられる[1]。アルベドが非常に高い値であることも、この天体の主成分が氷であることを支持している[5]

南極部分には南半球全体に及ぶ衝突クレーターの痕跡と思われる特徴が見られ、南半球がいくらか潰れたような形状をしている原因である可能性がある。エピメテウス表面で見られる地形には2種類あり、滑らかで暗い表面の領域と、明るくわずかに黄色っぽい破砕された領域である。表面の差異の解釈としては、暗い領域の物質は斜面を滑り落ち、明るい領域よりも氷の含有量が少ない岩盤のような部分が見えているという説がある[1]

土星の環との関係

2006年の土星探査機カッシーニによる前方散乱光の観測で、エピメテウスとヤヌスが公転している領域に薄い塵の環が存在することが判明した。この環は半径方向に 5,000 km ほどの広がりを持っている[20]。この環は、エピメテウスとヤヌスの表面への隕石衝突によって発生した塵が公転軌道周辺にばらまかれた結果として形成されていると考えられる[21][22]

また、エピメテウスはヤヌスと共に土星の環A環の維持に関与していることが分かっている。両者は共にA環からはやや離れているが、7:6 の軌道共鳴によってA環の明瞭な縁を形作っていると考えられている[23]。共鳴を起こす軌道は「内側の軌道」であり、質量の大きいヤヌスが内側の軌道にいる時の方がこの影響が顕著である[18]

出典

  1. ^ a b c d e f g h i NASA (2017年12月5日). “In Depth | Epimetheus – Solar System Exploration: NASA Science”. アメリカ航空宇宙局. 2018年11月24日閲覧。
  2. ^ a b c d e Spitale, J. N.; Jacobson, R. A.; Porco, C. C.; Owen, W. M., Jr. (2006). “The orbits of Saturn's small satellites derived from combined historic and Cassini imaging observations”. The Astronomical Journal 132 (2): 692–710. Bibcode2006AJ....132..692S. doi:10.1086/505206. http://iopscience.iop.org/1538-3881/132/2/692/pdf/1538-3881_132_2_692.pdf. 
  3. ^ a b c Jet Propulsion Laboratory (2013年8月23日). “Planetary Satellite Mean Orbital Parameters”. Jet Propulsion Laboratory Solar System Dynamics. ジェット推進研究所. 2018年11月24日閲覧。
  4. ^ a b c d e f g Thomas, P. C. (July 2010). “Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission”. Icarus 208 (1): 395–401. Bibcode2010Icar..208..395T. doi:10.1016/j.icarus.2010.01.025. http://www.ciclops.org/media/sp/2011/6794_16344_0.pdf. 
  5. ^ a b Verbiscer, A.; French, R.; Showalter, M.; Helfenstein, P. (2007-02-09). “Enceladus: Cosmic Graffiti Artist Caught in the Act”. Science 315 (5813): 815. Bibcode2007Sci...315..815V. doi:10.1126/science.1134681. PMID 17289992. http://www.sciencemag.org/content/315/5813/815.abstract 2011年12月20日閲覧。. 
  6. ^ Owen Gingerich (1967年1月3日). “IAUC 1987: Prob. NEW Sat OF SATURN; 1966e; 1965d”. Central Bureau for Astronomical Telegrams. 国際天文学連合. 2018年11月25日閲覧。
  7. ^ Owen Gingerich (1967年2月1日). “IAUC 1995: SATURN X (JANUS); DEFINITIVE ORBITS OF COMETS; 1967a”. Central Bureau for Astronomical Telegrams. 国際天文学連合. 2018年11月25日閲覧。
  8. ^ Owen Gingerich (1967年1月6日). “IAUC 1991: 1967a; Poss. NEW Sat OF SATURN”. Central Bureau for Astronomical Telegrams. 国際天文学連合. 2018年11月25日閲覧。
  9. ^ Fountain, J. W.; Larson, S. M. (1978). “Saturn's ring and nearby faint satellites”. Icarus 36: 92–106. Bibcode1978Icar...36...92F. doi:10.1016/0019-1035(78)90076-3. 
  10. ^ Leverington, David (2003). Babylon to Voyager and beyond: a history of planetary astronomy. ケンブリッジ大学出版局. ISBN 0-521-80840-5. https://books.google.com/?id=6Hpi202ybn8C&pg=PA454 
  11. ^ Ulivi, Paolo; Harland, David M (2007). Robotic Exploration of the Solar System Part I: The Golden Age 1957-1982. シュプリンガー. p. 150. ISBN 9780387493268 
  12. ^ a b Brian G. Marsden (1980年6月6日). “IAUC 3483: Sats OF SATURN”. Central Bureau for Astronomical Telegrams. 国際天文学連合. 2018年11月25日閲覧。
  13. ^ Brian G. Marsden (1980年3月6日). “IAUC 3457: SATURN”. Central Bureau for Astronomical Telegrams. 国際天文学連合. 2018年11月25日閲覧。
  14. ^ Planet and Satellite Names and Discoverers”. Planetary Names. 国際天文学連合. 2018年11月25日閲覧。
  15. ^ Brian G. Marsden (1980年3月31日). “IAUC 3463: Sats OF SATURN”. Central Bureau for Astronomical Telegrams. 国際天文学連合. 2018年11月25日閲覧。
  16. ^ a b Brian G. Marsden (1983年9月30日). “IAUC 3872: GX 1+4; Sats OF JUPITER AND SATURN”. Central Bureau for Astronomical Telegrams. 国際天文学連合. 2018年11月25日閲覧。
  17. ^ The Dancing Moons”. Cassini Solstice Mission. ジェット推進研究所 (2006年5月3日). 2011年12月29日閲覧。
  18. ^ a b El Moutamid, Maryame; Nicholson, Philip D.; French, Richard G.; Tiscareno, Matthew S.; Murray, Carl D.; Evans, Michael W.; French, Colleen McGhee; Hedman, Matthew M. et al. (2016). “How Janus’ orbital swap affects the edge of Saturn’s A ring?”. Icarus 279: 125–140. doi:10.1016/j.icarus.2015.10.025. ISSN 00191035. 
  19. ^ 暦Wiki/共鳴 - 国立天文台暦計算室”. 暦計算室. 国立天文台. 2018年11月25日閲覧。
  20. ^ PIA08328: Moon-Made Rings”. Photojournal. ジェット推進研究所 (2006年10月11日). 2011年12月29日閲覧。
  21. ^ Cassini-Huygens press release NASA Finds Saturn's Moons May Be Creating New Rings Archived 2006-10-16 at the Wayback Machine.、2006年10月11日
  22. ^ 「カッシーニ」、土星の環をかすめるコースの飛行を開始 - アストロアーツ”. アストロアーツ (2016年12月8日). 2018年11月25日閲覧。
  23. ^ Lakdawalla, Emily (2007年6月13日). “Funny little Atlas”. The Planetary Society weblog. 2011年12月30日閲覧。