コンテンツにスキップ

「水星」の版間の差分

出典: フリー百科事典『ウィキペディア(Wikipedia)』
削除された内容 追加された内容
YukkeBot (会話 | 投稿記録)
m r2.6.5) (ロボットによる 追加: kv:Меркурий
en:Mercury (planet)2011-02-22 08:58UTCより訳を加え加筆
タグ: サイズの大幅な増減
24行目: 24行目:
| 平均公転半径 = [[1 E10 m|57,910,000 km]]
| 平均公転半径 = [[1 E10 m|57,910,000 km]]
| 平均直径 =
| 平均直径 =
| 軌道長半径 =
| 軌道長半径 =
| 近日点距離 = 0.3075 AU
| 近日点距離 = 0.3075 AU
| 遠日点距離 = 0.4667 AU
| 遠日点距離 = 0.4667 AU
| 離心率 = 0.20563069
| 離心率 = 0.20563069
| 公転周期 = [[1 E6 s|87日 23.3時間]]<br />(0.240852 年)
| 公転周期 = [[1 E6 s|87日 23.3時間]] <br />(0.2408467 年)
| 会合周期 = 115.88 日
| 会合周期 = 115.88 日
| 軌道周期 =
| 軌道周期 =
41行目: 41行目:
{{天体 物理
{{天体 物理
| 色 = 岩石天体
| 色 = 岩石天体
| 赤道直径 = [[1 E6 m|4,879.4 km]] <ref name=nasa>{{cite web|url= http://solarsystem.nasa.gov/planets/profile.cfm?Object=Mercury&Display=Facts |title= Solar System Exploration |author= |publisher=[[NASA]] |language=英語|accessdate=2011-03-11}}</ref>
| 赤道直径 = [[1 E6 m|4,879.4 km]]
| 直径 =
| 直径 =
| 半径 =
| 半径 =
| 表面積 = 7.5 {{e|7}} [[平方キロメートル|km<sup>2</sup>]]
| 表面積 = 7.4797 {{e|7}} [[平方キロメートル|km<sup>2</sup>]]<ref name=nasa />
| 体積 = 6.082721 {{e|10}} [[立方キロメートル|km<sup>2</sup>]]<ref name=nasa />
| 体積 =
| 質量 = 3.302 {{e|23}} [[キログラム|kg]]
| 質量 = 3.301 {{e|23}} [[キログラム|kg]]<ref name=nasa />
| 相対対象1 = 地球
| 相対対象1 = 地球
| 相対質量1 = 0.0553<ref name="nssdcMercury">{{cite web|url= http://nssdc.gsfc.nasa.gov/planetary/factsheet/mercuryfact.html |title=Mercury Fact Sheet |author=Dr. David R. Williams |publisher=[[NASA]] |language=英語|accessdate=2011-03-11}}</ref>
| 相対質量1 = 0.05528
| 相対対象2 =
| 相対対象2 =
| 相対質量2 =
| 相対質量2 =
| 平均密度 = 5.43 g/cm<sup>3</sup>
| 平均密度 = 5.427 g/cm<sup>3</sup><ref name=nasa /><ref name="nssdcMercury" />
| 表面重力 = 3.70 [[加速度|m/s<sup>2</sup>]]
| 表面重力 = 3.70 [[加速度|m/s<sup>2</sup>]]<ref name=nasa /><ref name="nssdcMercury" />
| 脱出速度 = 4.44 km/s
| 脱出速度 = 4.25 km/s<ref name=nasa />
| 自転周期 = [[1 E6 s|58日 15.5088時間]]<br />(恒星日)<br />175.84 日<br />(太陽日)
| 自転周期 = [[1 E6 s|58日 15.5088時間]]<ref name=nasa /><br />(恒星日)<br />175.84 日<br />(太陽日)
| 絶対等級 =
| 絶対等級 =
| 光度 =
| 光度 =
| 光度係数 =
| 光度係数 =
| アルベド = (球面)0.065-0.071<br />(幾何学値)0.137-0.147]])<ref name="MallamaMercury">{{cite web|url= http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WGF-45K104K-4B&_user=10&_coverDate=02%2F28%2F2002&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=8da4391aa514fcb19a3577dddda59c4f&searchtype=a |title= Photometry of Mercury from SOHO/LASCO and Earth |author=Anthony Mallama, Dennis Wang, Russell A. Howard |publisher= Science Direct |language=英語|accessdate=2011-03-11}}</ref>
| アルベド = 0.10-0.12
| 赤道傾斜角 = 0 度
| 赤道傾斜角 = 0 度
| 表面温度 = 623 [[ケルビン|K]](日中)<br />103 K(夜間)
| 表面温度 = 623 [[ケルビン|K]](日中)<br />103 K(夜間)
| 最小表面温度 = 90 K<ref name="ESAs&t">{{cite web | title=Background Science | work=BepiColombo | publisher=European Space Agency | date=August 6, 2010 | url=http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=47055 | accessdate=2011-03-19|language=英語}}</ref><ref name=nasa />
| 最小表面温度 = 90 K
| 平均表面温度 = 440 K
| 平均表面温度 = 440 K<ref name="nssdcMercury" />
| 最大表面温度 = 700 K
| 最大表面温度 = 700 K<ref name=nasa />
| 可視光明度 =
| 可視光明度 =
| 全波長明度 =
| 全波長明度 =
71行目: 71行目:
| 金属量 =
| 金属量 =
| 年齢 =
| 年齢 =
| 大気圧 = 10<sup>-10</sup> [[パスカル (単位)|Pa]]<ref name="NASA">http://nssdc.gsfc.nasa.gov/planetary/factsheet/mercuryfact.html</ref>、<br />10<sup>-7</sup> Pa<ref name="ISAS">http://www.isas.ac.jp/j/column/inner_planet/07.shtml</ref>
| 大気圧 = 10<sup>-10</sup> [[パスカル (単位)|Pa]] <ref name="nssdcMercury" />、<br />10<sup>-7</sup> Pa<ref name="ISAS">{{cite web | title=第7回 水星の超真空大気の生成| publisher=[[JAXA]] | url= http://www.isas.ac.jp/j/column/inner_planet/07.shtml | accessdate=2011-03-19|language=日本語}} </ref>
| 大気 =
| 大気 =
{{天体 項目|[[酸素]]|42%}}
{{天体 項目|[[酸素]]|42%}}
83行目: 83行目:
| 色 = 岩石天体
| 色 = 岩石天体
}}
}}
'''水星'''(すいせい、[[英語|英]]:Mercury)は、[[太陽系]]の第1[[惑星]]で、[[太陽]]に最も近い惑星である。
'''水星'''(すいせい、[[英語|英]]:Mercury)は、[[太陽系]]にある[[惑星]]の1つで、[[太陽]]に最も近い公転軌道を周回する。岩石質の「[[地球型惑星]]」に分類され、太陽系惑星の中で大きさ、質量ともに最小のものである<ref group="注">以前最小の惑星だった[[冥王星]]は2006年に[[準惑星]]へ定義されなおした。</ref>


== 概要 ==
== 概要 ==
太陽系の惑星の中では最も小さい。例えば赤道面での直径 4,879.4 km地球の38%に過ぎない。水星よりも大きな[[衛星]]は[[木星]]の[[ガニメデ (衛星)|ガニメデ]]と[[土星]]の[[タイタン (衛星)|タイタン]]水星自体は衛星や[[環 (天体)|環]]を伴っていない。
太陽系の惑星の中では最も小さい。例えば[[赤道]]面での直径 4,879.4km[[地球]]の38%に過ぎない。水星よりも大きな[[衛星]]は[[木星]]の[[ガニメデ (衛星)|ガニメデ]]と[[土星]]の[[タイタン (衛星)|タイタン]]があり、水星自体は衛星や[[環 (天体)|環]]を伴っていない。


[[天球]]上での見かけの明るさは -0.4 等から 5.5 等まで変化する。水星は太陽に非常に近いため、日の出前と日没直後のわずかな時間しか観察できない。時期によっては望遠鏡でも見るが難しい。これは太陽との最大離角が28.3度に過ぎないためである。
[[天球]]上での見かけの明るさは -0.4 等から 5.5 等まで変化する。水星は太陽に非常に近いため、[[日の出]]前と[[日没]]直後のわずかな時間しか観察できず、時期によっては[[望遠鏡]]でも見ることが難しい。これは太陽との最大離角が28.3度に過ぎないためである。


[[アメリカ合衆国|アメリカ]]の[[マリナー10号]]([[1974]] - [[1975年]])が初めて水星へ接近して以来、2008年まで水星に到達した[[宇宙探査機|探査機]]はなく、地表の約 40 % ないし 45 % しか[[地図]]が作られていなかった。マリナーの撮影た水星は[[クレーター]]が目立ち、[[月]]と非常によく似ていると考えられた。このため、[[火星]]や[[金星]]、[[外惑星]]比較すると探査の優先度が低くなった。21世紀の現在におい分からないことが多い惑星である。しかしな、2008年に探査を始めたアメリカの[[メッセンジャー (探査機)|メッセンジャー]]や2014年に打ち上げ予定の日欧共同プロジェクト[[ベピ・コロンボ]]など、今後の探査が期待されている惑星でもある。
[[アメリカ合衆国|アメリカ]]の[[宇宙探査機|探査機]][[マリナー10号]](1974年 - 1975年)が初めて水星へ接近し、地表の約40%ないし45%[[地図]]が作られた。撮影され映像から、水星多数の[[クレーター]]があり、[[月]]と非常によく似た環境だと考えられた。しかし依然て分からないことが多い惑星であるが、2008年に探査を始めたアメリカの[[メッセンジャー (探査機)|メッセンジャー]]や2014年に打ち上げ予定の日欧共同プロジェクト[[ベピ・コロンボ]]などによって、探査の進展が期待されている。


== 物理学的性質 ==
== 軌道 ==
=== 大気 ===
=== 公転 ===
水星の[[公転]]周期は約88日である。その[[軌道離心率]]約0.21は太陽系惑星の中でもっとも大きく、[[近日点]]が 約0.31 AU (46 {{e|6}} km) で[[遠日点]]が 約0.47 AU (70 {{e|6}} km) という、太陽を[[焦点]]のひとつとする大きな楕円軌道を描いている<ref name=Miya63-1>[[#宮本ら2008|宮本ら (2008)、1.水星、pp.63-66、1-1水星の運動と内部構造]]</ref><ref name=MatsuEar30-2>[[#松井『惑星』|松井『惑星』、第二章 そそり立つ絶壁の壁、pp.30-33、軌道について]]</ref>。
水星には[[大気]]はほとんど存在せず、非常に薄いガスの層があるだけである。大気の分子は大気の分子同士で衝突するよりも水星の地表に衝突する確率の方が高いほどである。気圧は、いろいろな仮定を用いて見積もると、10<sup>-7</sup> [[パスカル (単位)|Pa]](10<sup>-12</sup> [[気圧 (単位)|気圧]])程度で、成分は[[水素]]、[[ヘリウム]]、[[ナトリウム]]、[[カリウム]]、[[カルシウム]]が検出されている<ref name="ISAS"/><ref name="ASTROTARTS">[http://www.astroarts.co.jp/news/2006/11/15mercurial_atmosphere/index-j.shtml 水星大気の時間変動を地上から観測【2006年11月15日 アストロアーツ】]</ref>(気圧を10<sup>-10</sup>Paとするものもある<ref name="NASA"/>)。


[[File:ThePlanets Orbits Mercury EclipticView.svg|thumb|left|(上)黄道から10度上方の位置から見下ろした水星の公転軌道。(下)黄道の真横から見た軌道。]]
水星の大気は惑星形成の初期には他の惑星と同様に存在したと考えられるが、重力が小さいためにその大半は既に[[宇宙]]へ飛散したと考えられている。カリウムやナトリウムが大気に留まる平均時間は3時間程度である。大気は様々なメカニズムによって供給されている。[[太陽風]]を[[磁場|磁界]]で捕らえる、[[微小隕石]]が地表で[[蒸発]]する、太陽光による脱離、などがその主なものである。
公転面は地球の公転面([[黄道]])に対して7度の傾きがある。その結果、[[水星の日面通過]]は黄道に水星があるタイミングに限られ、その頻度は平均7年に1度しか観測されない<ref>{{cite web | last=Espenak | first=Fred | date=April 21, 2005 | url=http://eclipse.gsfc.nasa.gov/transit/catalog/MercuryCatalog.html | title=Transits of Mercury | publisher=NASA/Goddard Space Flight Center | accessdate=2011-03-19|language=英語}}</ref>。


この軌道の近日点は太陽の周りを周回する形でゆっくりと移動しており、その度合いは100年で574[[秒 (角度)|秒]]である。このうち531秒は金星など他の惑星からの重力効果で説明できたが、残り43秒については[[アイザック・ニュートン|ニュートン]]の[[古典力学]]では説明できなかった。このため、ある条件で[[逆2乗の法則]]が成り立たなくなるという説や、水星の内側にもう1つ惑星があるという説が現れた([[バルカン (惑星)|バルカン]]参照)<ref>U. Le Verrier (1859), (in French), [http://www.archive.org/stream/comptesrendusheb49acad#page/378/mode/2up "Lettre de M. Le Verrier à M. Faye sur la théorie de Mercure et sur le mouvement du périhélie de cette planète"], Comptes rendus hebdomadaires des séances de l'Académie des sciences (Paris), vol. 49 (1859), pp.379-383. (At p.383 in the same volume Le Verrier's report is followed by another, from Faye, enthusiastically recommending to astronomers to search for a previously undetected intra-mercurial object.)</ref>。このニュートン力学では説明できなかった43秒は、後に[[アルベルト・アインシュタイン|アインシュタイン]]の[[一般相対性理論]]によって「太陽の重力により[[時空]]が歪んだ結果」として説明づけられた<ref>{{cite journal | last=Gilvarry | first=J. J. | title=Relativity Precession of the Asteroid Icarus | journal=Physical Review | year=1953 | volume=89 | issue=5 | pages=1046 | doi=10.1103/PhysRev.89.1046 | url=http://prola.aps.org/abstract/PR/v89/i5/p1046_1 | accessdate=2011-03-19|language=英語| format=subscription required }}
=== 温度 ===
</ref><ref>{{cite web | author=Anonymous | url=http://www.mathpages.com/rr/s6-02/6-02.htm | title=6.2 Anomalous Precession | work=Reflections on Relativity | publisher=MathPages | accessdate=2011-03-19|language=英語}}</ref>。
表面の[[平均]][[温度]]は 452 K(179 ℃)であるが、温度変化は 90 K(-183 ℃) - 700 K(427 ℃)におよぶ。なお、地球の温度変化(年較差)は最大でも約 60 ℃([[シベリア]]東部)である。観測上の最低気温と最高気温の差をとっても 184 K - 332 K(148 ℃)の範囲に収まる。太陽光は地球の約6.3倍で、総計では 3,566 W/m<sup>2</sup> になる。

[[ファイル:Mercury's orbital resonance.png|thumb|right|水星の公転と自転の関係 - 水星は2回公転する間に3回自転する。]]
=== 自転 ===
水星の公転周期は55日である<ref name=Miya63-1/>。1965年に[[レーダー]]観測が行われるまで、水星の自転は地球の月や他の多くの衛星と同様に、太陽からの潮汐力によって[[自転と公転の同期|公転と同期]]しており、常に太陽に同じ面を向けて1公転中に1回自転していると考えられていた。しかし実際には水星の自転と公転は 2:3 の[[共鳴]]関係にある<ref name=Miya63-1 /><ref name=MatsuEar37>[[#松井『惑星』|松井『惑星』、第二章 そそり立つ絶壁の壁、pp.37-40、公転と自転の奇妙な組み合わせ]]</ref><ref name="Benz"/>。すなわち、太陽の周囲を2回公転する間に3回自転する<ref>{{cite journal | last=Liu | first=Han-Shou | coauthors=O'Keefe, John A. | title=Theory of Rotation for the Planet Mercury | journal=Science | year=1965 | volume=150 | issue=3704 | pages=1717 | doi=10.1126/science.150.3704.1717 | pmid=17768871 }}</ref>。水星の公転軌道の[[離心率]]が比較的大きいため、この共鳴関係は安定して持続している。水星の自転と公転が同期していると考えられた元々の理由は、地球から見て水星が最も観測に適した位置にある時にはいつでも同じ面が見えたからであった。実際にはこれは 2:3 の共鳴の同じ位置にある時に観測していたためだった。この共鳴があるために、水星の[[恒星日]](自転周期)は58.7日なのに対して、水星の[[太陽日]](水星表面から見た太陽の子午線通過の間隔)は176日と、3倍になっている.<ref name=strom />。誕生直後の水星は8時間程度の速さで自転していたが、太陽の潮汐力によって段々と遅くなり現在の同期状態になったと考えられるが、なぜ2:3の比となったのかは分っていない<ref name=MatsuEar37 />。

水星表面の特定の場所では、水星の1日において日の出の途中で太陽が[[順行・逆行|逆行]]して一度沈み、その後再び上るという現象が見られる。これは、水星が[[近日点]]を通過する約4日前から水星の[[軌道速度]]と角度で測定した自転速度[[:en:rotational velocity|(en)]]がちょうど等しくなるため、水星表面から見て太陽[[固有運動]]が止まって見えることに起因する。そこに、近日点である楕円型公転軌道の尖った部分(円弧と長辺の交点)を水星が通り過ぎるために公転による角速度が自転のそれを上回とことが重なり、太陽が逆に進むように見える。近日点通過の4日後には太陽は[[順行・逆行|順行]]に戻る.<ref name="strom" />。

水星の[[赤道傾斜角]](自転軸の傾き)は惑星の中で最も小さく、わずか 0.027度以下でしかない<ref name=Margot2007>{{cite journal| last=Margot | first=L.J.| coauthors=Peale, S. J.; Jurgens, R. F.; Slade, M. A.; Holin, I. V.| title=Large Longitude Libration of Mercury Reveals a Molten Core| journal=Science| year=2007 | volume=316 | pages=710&ndash;714| doi=10.1126/science.1140514
| url=http://adsabs.harvard.edu/abs/2007Sci...316..710M| pmid=17478713| issue=5825}}</ref>。これは2番目に傾斜が小さい木星の値(約3.1度)に比べても1/300と非常に小さい値である。このため、日の出の位置は2.1[[分 (角度)|分]]以上ぶれない<ref name=Margot2007/>。

== 惑星の物理的性質 ==
[[ファイル:Mercury_inside_Lmb.png|200px|right|thumb|水星の内部構造。1:核、2:マントル、3:地殻。]]
[[File:Terrestrial planet size comparisons.jpg|200px|right|thumb|同縮尺の地球型惑星。左から、水星、金星、地球、火星。]]
=== 内部構造から考えられる水星の起源 ===
水星には半径 1,800 km 程度の[[核 (天体)|核]]が存在する<ref name=Miya63-1 />。これは惑星半径の3/4に相当し、水星全体では質量の約 70 % が[[鉄]]や[[ニッケル]]等<ref name=MatsuEar35>[[#松井『惑星』|松井『惑星』、第二章 そそり立つ絶壁の壁、pp.35-36、鉄・ニッケルから成る星]]</ref>の[[金属]]、30 % が[[二酸化ケイ素]]で出来ている<ref name=strom>{{cite book| first=Robert G. | last=Strom | coauthors=Sprague, Ann L. | year=2003 | title=Exploring Mercury: the iron planet | publisher=Springer | isbn=1-85233-731-1 }}</ref>。

平均密度 5,430 kg/m{{sup|3}}は地球と比べわずかに小さい<ref name=Miya63-1 /><ref name="nssdcMercury" />。核の比率が大きい割に密度がそれほど高くないのは、地球は自重によって惑星の体積が圧縮され密度が高くなるのに対し、小さな水星は圧縮される割合が低いためである。地球中心部の圧力は366万気圧に達するのに対し、水星中心部は約25-40万気圧にとどまる<ref name=MatsuEar35 />。しかし、天体の大きさと平均密度の相関関係では、水星は唯一他の地球型惑星が示す傾向から60%程度重い方向に外れている<ref name=Miya63-1 />。自重による圧縮を除外して計算された平均密度は、水星が 5,300 kg/m{{sup|3}}、地球が 4,000-4,100 kg/m{{sup|3}}となり、水星のほうが有意に高い値をとる<ref name=MatsuEar35 /><ref>{{cite web | author=staff | date=May 8, 2003 | url=http://astrogeology.usgs.gov/Projects/BrowseTheGeologicSolarSystem/MercuryBack.html|title=Mercury |publisher=U.S. Geological Survey | accessdate=2011-03-19|language=英語}}</ref>。

水星の体積は地球の 5.5 %に相当する。しかし地球の金属核は 17 % にすぎないのに対し、水星の金属核はその 42 % を占める<ref>{{cite journal | title=On the Internal Structures of Mercury and Venus | author=Lyttleton, R. A. | journal=Astrophysics and Space Science | volume=5 | issue=1 | pages=18 | year=1969 | accessdate=2011-03-19|language=英語| doi=10.1007/BF00653933 }}</ref><ref name="cornell">{{cite news | first=Lauren | last=Gold | title=Mercury has molten core, Cornell researcher shows | date=May 3, 2007 | publisher=Cornell University | url=http://www.news.cornell.edu/stories/May07/margot.mercury.html | work=Chronicle Online | accessdate=2011-03-19|language=英語}}</ref><ref name=nrao>{{cite news | last=Finley | first=Dave | date=May 3, 2007 | title=Mercury's Core Molten, Radar Study Shows | publisher=National Radio Astronomy Observatory | url=http://www.nrao.edu/pr/2007/mercury/ | accessdate=2011-03-19|language=英語}}</ref>。核は地球の[[内核]]と[[外核]]のように、固体と液体に分離している可能性がある。核の周りは厚さ600km 程度の岩石質[[マントル]]で覆われている<ref name=Miya63-1 /><ref>{{cite journal | author=Spohn, Tilman; Sohl, Frank; Wieczerkowski, Karin; Conzelmann, Vera | title=The interior structure of Mercury: what we know, what we expect from BepiColombo | journal=Planetary and Space Science | volume=49 | issue=14&ndash;15 | pages=1561&ndash;1570 | doi=10.1016/S0032-0633(01)00093-9 | bibcode=2001P&SS...49.1561S | year=2001 }}</ref><ref>Gallant, R. 1986. ''The National Geographic Picture Atlas of Our Universe''. National Geographic Society, 2nd edition.</ref>が、これは他の岩石惑星と比べごく薄いためマントルの対流が小規模となり、惑星表面に特有の影響を及ぼした可能性が指摘されている<ref name=Miya63-1 />。地殻は、マリナー10号の観測結果から厚さ100-300kmと推測されている<ref name="anderson1">{{cite journal | last=Anderson | first=J. D. | coauthors=''et al.'' | date=July 10, 1996 | title=Shape and Orientation of Mercury from Radar Ranging Data | journal=Icarus | volume=124 | pages=690–697 | publisher=Academic press | doi=10.1006/icar.1996.0242 }}</ref>。

水星は太陽系の他のどの天体よりも鉄の存在比が大きい。この高い金属存在量を説明するために、主に三つの[[理論]]が提唱されている。一つ目は、水星は元々ありふれた[[コンドライト]]隕石と同程度の金属-珪酸塩比を持ち、その質量が現在よりも約2.25倍大きかったが、太陽系形成の初期に水星の 1/6 程度の質量を持つ[[原始惑星]]と衝突した<ref name="Benz">{{cite journal | title=Collisional stripping of Mercury’s mantle | author=Benz, W.; Slattery, W. L.; Cameron, A. G. W. | journal=Icarus | volume=74 | issue=3 | pages=516–528 | year=1988 | accessdate=2011-03-19|language=英語| doi=10.1016/0019-1035(88)90118-2 }}</ref>ために元々の[[地殻]]と[[マントル]]の大部分が吹き飛んで失われ、延性を持つ金属核は合体したために比率が高い現在の姿になったという<ref name=MatsuEar36>[[#松井『惑星』|松井『惑星』、第二章 そそり立つ絶壁の壁、pp.36-37、水素の起源]]</ref><ref name="Benz"/>。これは地球の月の形成を説明する[[ジャイアント・インパクト説|ジャイアント・インパクト理論]]と同様なメカニズムであり<ref name="Benz"/>、「巨大衝突説」と呼ばれる<ref name=Miya71 /><ref name=Newton58>[[#ニュートン (別2009)| ニュートン (別2009)、pp.58-59、水星の巨大な核はどうやってできた?]]</ref>。また、このような現象は[[原始惑星]]形成時から起こり、水星軌道では選択的に金属が集まりやすかったという「選択集積説」も有力な仮説として唱えられている<ref name=Newton58 /><ref name=Miya71>[[#宮本ら2008|宮本ら (2008)、1.水星、pp.71-72、1-3起源を探る探査]]</ref>。

二つ目は、水星が原始太陽系星雲の歴史のごく初期の段階に形成され、その時には未だ太陽からのエネルギー放射が安定化していなかったことが原因という説がある<ref name=Miya71 />。この理論では、当初水星は現在の約2倍の質量を持っていたが、[[原始星]]段階の太陽が収縮するにつれて活動が活発化して[[プラズマ]]を放出し<ref name=Newton58 />、このために水星付近の温度が 2,500 - 3,500 K、あるいは 10,000 K 近くにまで加熱された。表面の岩石がこの高温によって蒸発して岩石蒸気となり、これが原始太陽系星雲風によって吹き飛ばされたために地殻部分が痩せ細って薄くなったという<ref name="CameronAGW1">{{cite journal | title = The partial volatilization of Mercury | author = Cameron, A. G. W. | journal = Icarus | volume = 64 | issue = 2| pages = 285–294 | year = 1985 | doi = 10.1016/0019-1035(85)90091-0 }}</ref>。これは「蒸発説」と呼ばれる<ref name=Miya71 /><ref name=Newton58 />。

三つ目の説は、原始太陽系星雲からの太陽風が水星表面に付着していた軽い粒子に[[抗力]]を生じさせ、奪い去る現象が重なったというものである<ref>{{cite journal | title = Iron/silicate fractionation and the origin of Mercury | author = Weidenschilling, S. J. | journal = Icarus | volume = 35 | issue = 1 | pages = 99–111 | year = 1987 | accessdate=2011-03-19|language=英語| doi = 10.1016/0019-1035(78)90064-7}}</ref>。他にも、水星は地殻部分がコアとマントルの冷却よりも先に形成されたため、これが影響したという説もある<ref>{{cite journal | title = Lobate Thrust Scarps and the Thickness of Mercury’s Lithosphere | author = Schenk, P.; Melosh, H. J.; | journal = Abstracts of the 25th Lunar and Planetary Science Conference | volume = 1994 | pages = 1994LPI....25.1203S | accessdate=2011-03-19|language=英語| url = http://adsabs.harvard.edu/abs/1994LPI....25.1203S | date = 03/1994 }}</ref>。


これらの各仮説では、水星表面の構成に異なった影響を与えると考えられている。 探査機[[メッセンジャー (探査機)|メッセンジャー]]と打ち上げが予定されている[[ベピ・コロンボ]]は、この課題を観測する目的を担う予定である<ref name="MSGRgrayzeck">{{cite web| first=Ed | last=Grayzeck | url=http://messenger.jhuapl.edu/| title=MESSENGER Web Site | publisher=Johns Hopkins University | accessdate=2011-03-19|language=英語}}</ref><ref name="ESA pages">{{cite web| url=http://sci.esa.int/science-e/www/area/index.cfm?fareaid=30| title=BepiColombo | work=ESA Science & Technology| publisher=European Space Agency| accessdate=2011-03-19|language=英語}}</ref><ref name=Newton58 />。
1992年の[[レーダー]]観測によって、水星の北極部分に[[水]]の[[氷]]が発見された。この氷は、[[彗星]]の衝突や水星内部からの放出で生まれた水が、1年を通じて太陽光が当たらない、極地方のクレーターの底の[[永久影]]の部分に残されているものと考えられている。


[[File:Caloris Basin comparison.jpg|200px|left|thumb|[[カロリス盆地]]。黄色の線はマリナー10号写真から判断された範囲。青はメッセンジャーの写真から改訂された範囲。]]
=== 地形 ===
=== 地形 ===
当初、水星の地形は望遠鏡による[[アルベド]]の計測で予想された。地域によって反射率に差異があり、これは月の[[高地]]のようなリンクルリッジ[[:en:wrinkle-ridge|(en)]]、[[山脈]]、[[平野]]、ルペス[[:en:Rupes|(en)]]([[絶壁]])、ヴァリス[[:en:Vallis|(en)]]([[谷]])などがあるためと推測された<ref>{{cite web | last=Blue | first=Jennifer | date=April 11, 2008 | url=http://planetarynames.wr.usgs.gov/ | title=Gazetteer of Planetary Nomenclature | publisher=US Geological Survey | accessdate=2011-03-19|language=英語}}</ref><ref name="DunneCh7" />。
[[ファイル:Mercury Earth Comparison.png|200px|thumb|同縮尺の水星(左)と地球(右)]]
水星の地表は月の地表と似ている。水星のもっとも特徴的な(写真などで見分けるポイントとなる)地形は、[[直径]] 1,550 [[キロメートル|km]] ほどのクレーターから成る[[カロリス盆地]]である。十億年以上前にクレーターができ、その後大地が冷えて固まったため、地表の様々なところに波模様ができたと考えられている。


1975年のマリナー10号による観測で得た情報から基本的な部分が明らかになった。水星の地表は月の地表と似ており、その特徴は、数十億年単位時間を経て形成される[[月の海]]のような平滑面や、全球を覆うさまざまな大きさの[[クレーター]]が数多く存在していることにある<ref name=Miya66>[[#宮本ら2008|宮本ら (2008)、1.水星、pp.66-71、1-2水星の表面]]</ref><ref name=Spudis01>{{cite journal | first=P. D. | last=Spudis | title=The Geological History of Mercury | journal=Workshop on Mercury: Space Environment, Surface, and Interior, Chicago | year=2001 |pages=100 | url=http://adsabs.harvard.edu/abs/2001mses.conf..100S | accessdate=2011-03-19|language=英語}}</ref><ref name=nrao>{{cite news | last=Finley | first=Dave | date=May 3, 2007 | title=Mercury's Core Molten, Radar Study Shows | publisher=National Radio Astronomy Observatory | url=http://www.nrao.edu/pr/2007/mercury/ | accessdate=2011-03-19|language=英語}}</ref>。その中でも最も目に付くものは、惑星直径の1/4以上に相当する[[直径]]1,300[[キロメートル|km]]ほどのクレーター群から成る[[カロリス盆地]]である<ref name=Miya66 /><ref>{{cite web | title=太陽系惑星の特徴と地球との比較|author=玉手将人| publisher=[[帝京科学大学]]天文部| url=http://bigbox.cc.ntu.ac.jp/~tenmon/yogo2.html | accessdate=2011-03-11}}</ref>。これは、46億年前に水星が形成されて間もなく始まり38億年前まで続いた[[後期重爆撃期]]に<ref>{{cite journal|author=Strom, Robert|month=September | year=1979 |volume=24|title=Mercury: a post-Mariner assessment|journal=Space Science Reviews|pages=3–70}}</ref>、[[彗星]]や[[隕石]]が衝撃を和らげる大気が無い水星に<ref>{{cite journal|last=Broadfoot|first=A. L.|coauthors=S. Kumar, M. J. S. Belton, and M. B. McElroy|title=Mercury's Atmosphere from Mariner&nbsp;10: Preliminary Results|journal=Science|volume= 185|issue= 4146|date=July 12, 1974 |pages=166–169|doi=10.1126/science.185.4146.166|pmid=17810510}}</ref>衝突を繰り返すことでクレーターを形成し<ref name="DunneCh7">{{cite book|title=The Voyage of Mariner&nbsp;10 — Mission to Venus and Mercury|author=Dunne, J. A. and Burgess, E.|chapterurl=http://history.nasa.gov/SP-424/ch7.htm|publisher=NASA History Office|year=1978|chapter=Chapter Seven|url=http://history.nasa.gov/SP-424/| accessdate=2011-03-19|language=英語}}</ref>、当時まだ活発だった[[火山]]活動によって[[盆地]]が[[マグマ]]で埋まり形成されたと考えられる<ref name=Miya66 /><ref>{{cite web | author=Staff | date=August 5, 2003 | url=http://astrogeology.usgs.gov/Projects/BrowseTheGeologicSolarSystem/MercuryBack.html | title=Mercury | publisher=U.S. Geological Survey | accessdate=2011-03-19|language=英語
水星の表面はおおまかにいって異なる時代にできた二つの表面によって覆われている。若い方の表面は[[溶岩]]が流れ出して形成された軽い地表であり、古い地表よりクレーターが少ない。このような二分化された地形は月の高地-海の関係に似ているが、水星の新旧の地表の違いは月の場合ほど明確ではない<ref name="Watanabe">{{cite book | 和書 | author=[[渡部潤一]]、[[井田茂]]、[[佐々木晶]] | year=2008 | title=太陽系と惑星 | series=シリーズ現代の天文学 | publisher=[[日本評論社]] | pages=p.38- | isbn=978-4-535-60729-3}}</ref>。
}}</ref><ref>{{cite journal | last=Head | first=James W. | coauthors=Solomon, Sean C. | title=Tectonic Evolution of the Terrestrial Planets | journal=Science | year=1981 | volume=213 | issue=4503 | pages=62–76 | url=http://www.sciencemag.org/cgi/content/abstract/213/4503/62 | doi=10.1126/science.213.4503.62 | accessdate=2011-03-19|language=英語| pmid=17741171 }}</ref>。


水星の表面はおおまかにいって異なる時代にできた二つの表面によって覆われている。若い方の表面は[[溶岩]]が流れ出して形成された軽い地表であり、古い地表よりクレーターが少ない。このような二分化された地形は月の高地-海の関係に似ているが、水星に見られる新旧の地表の違いは月の場合ほど明確ではない<ref name="Watanabe">{{cite book | 和書 | author=[[渡部潤一]]、[[井田茂]]、[[佐々木晶]] | year=2008 | title=太陽系と惑星 | series=シリーズ現代の天文学 | publisher=[[日本評論社]] | pages=p.38- | isbn=978-4-535-60729-3}}</ref>。
水星の地表を特徴付けるもう一つの地形は、惑星の広い範囲に散在する断崖である。これは水星の内部が冷却され、半径が1-2kmほど縮む過程で形成された「しわ」であると考えられているが、太陽の潮汐力の影響という異説も存在する。断層のパターンについて詳細に分析できるようになれば、地形の正確な起源が明らかになるだろうと考えられている<ref name="Watanabe" />。また、水星は太陽からの[[潮汐力]]によって赤道部分が膨らんでいる(太陽が水星に与える潮汐力は月が地球に与える潮汐力の1.17倍である)。


水星の地表を特徴付けるもう一つの地形は、惑星の広い範囲に散在する高さ約2km、長いものでは500km<ref name=Newton56>[[#ニュートン (別2009)| ニュートン (別2009)、pp.56-57、太陽から一番近い惑星]]</ref>にもなる断崖(線構造)であり<ref name=Miya66 />、リンクルリッジと呼ばれる<ref name=Newton56 />。これは水星の内部が冷却され、半径が1-2kmほど縮む過程で形成された「しわ」であると考えられているが<ref name=Newton56 /><ref>{{cite journal |last=Dzurisin |first=D. |date=October 10, 1978 |title=The tectonic and volcanic history of Mercury as inferred from studies of scarps, ridges, troughs, and other lineaments |journal=Journal of Geophysical Research |volume=83 |pages=4883–4906 |url=http://adsabs.harvard.edu/abs/1978JGR....83.4883D |accessdate=2011-03-19|language=英語|doi=10.1029/JB083iB10p04883 }}</ref>、太陽の[[潮汐力]]の影響という異説も存在する<ref name=Tides>{{cite journal |last=Van Hoolst |first=Tim |coauthors=Jacobs, Carla |year=2003 |title=Mercury’s tides and interior structure |journal=Journal of Geophysical Research |volume=108 |issue=E11 |pages=7 |doi=10.1029/2003JE002126 | accessdate=2011-03-19|language=英語}}</ref>。断層のパターンについて詳細に分析できるようになれば、地形の正確な起源が明らかになると考えられている<ref name="Watanabe" />。また、太陽の潮汐力は地球が月に与える力の約17倍と推測され<ref name=Tides />、そのために水星では赤道部分が膨らむ潮汐変形が起きている。
=== 内部構造 ===
[[ファイル:Mercury_inside_Lmb.png|thumb|水星の内部構造。1:核、2:マントル、3:地殻。]]
水星には半径 1,800 km 程度の[[鉄]]の[[核 (天体)|核]]が存在する。これは惑星半径の3/4に相当し、水星全体では質量の約 70 % が[[金属]]、30 % が[[二酸化ケイ素]]で出来ている。このように、金属、特に鉄の質量比が大きいのは、過去に小天体との衝突で岩石質からなる表層部分を失ったためだとする説もある(詳細は後述)。


=== 地殻物質 ===
平均密度 5,430 kg/m{{sup|3}}は地球と比べわずかに小さい。コアの大きさの割に密度がそれほど高くないのは、地球は自重によって惑星の体積が圧縮されており、密度が高くなっているためである。実際に自重による圧縮を除外して計算された平均密度は、水星が 5,300 kg/m{{sup|3}}、地球が 4,000 kg/m{{sup|3}}となり、水星のほうが有意に高い値をとる<ref name="pg-mercury">{{Cite book | 和書 | author=宮本英昭、平田成、杉田精司、橘省吾 | title=惑星地質学 | publisher=[[東京大学出版会]] | year=2008 |page=p.63-72}}</ref>。
水星の表面には、鉄酸化物の存在量が他の地球型惑星と比較しても少なく重量比1-3%程度しか無い。これが反射率の高さに繋がっている。代わって、ナトリウム分が多い[[斜長石]]や鉄をあまり含まない[[輝石]]([[頑火輝石]])が主に占める<ref name=Miya66 />。


=== 大気 ===
水星の体積は地球の 5.5 % である。水星の鉄のコアはその 42 % を占めるが、地球の鉄のコアは 17 % にすぎない。コアは地球の[[内核]]と[[外核]]のように、固体と液体に分離している可能性がある(詳細は磁気圏の節を参照)。コアの周りは厚さ 600 km の[[マントル]]で覆われているが、これは他の岩石惑星と比べごく薄いため、マントルの対流に特有の影響を及ぼした可能性が指摘されている<ref name="pg-mercury" />。
水星は重力が小さいため、長く[[大気]]を留めておくことは難しい。しかし、ごく薄く[[分子]]同士の衝突がほとんど無い無衝突大気の存在が確認されている<ref name=Miya66 /><ref>{{cite journal | author=Domingue, Deborah L. ''et al.'' | title=Mercury's Atmosphere: A Surface-Bounded Exosphere | journal=Space Science Reviews | volume=131 | issue=1&ndash;4 | pages=161&ndash;186 | year=2009 | month=August | doi=10.1007/s11214-007-9260-9 | url=http://adsabs.harvard.edu/abs/2007SSRv..131..161D}}</ref><ref>{{cite web | url=http://wwwsoc.nii.ac.jp/jepsjmo/cd-rom/2009cd-rom/program/session/pdf/P144/P144-025.pdf |format=PDF| title=かぐや搭載UPI-TVISによる月ナトリウム大気の観測|author=鍵谷将人、田口真、山崎敦、村上豪、吉川一朗、菊池雅行、岡野章一| publisher=日本地球惑星科学連合| accessdate=2011-03-11|language=日本語}}</ref>。水星の気圧は10<sup>-7</sup> [[パスカル (単位)|Pa]](10<sup>-12</sup>[[気圧 (単位)|気圧]])程度と推測され、その成分は[[水素]]、[[ヘリウム]]の主成分<ref name=MatsuEar33>[[#松井『惑星』|松井『惑星』、第二章 そそり立つ絶壁の壁、pp.33-34、灼熱と極寒の同居する世界]]</ref>に加え、[[ナトリウム]]、[[カリウム]]、[[カルシウム]]、[[酸素]]などが検出されている<ref name=Miya66 /><ref name="ISAS"/><ref name="ASTROTARTS">[http://www.astroarts.co.jp/news/2006/11/15mercurial_atmosphere/index-j.shtml 水星大気の時間変動を地上から観測【2006年11月15日 アストロアーツ】]</ref>。


この大気組成は一定しておらず、絶えず供給と放出を繰り返している。水素やヘリウムは太陽風の粒子を水星磁場が捕捉したものと考えられ、やがて宇宙空間に拡散されてゆく。地殻で生じる[[放射性崩壊]]もひとつのヘリウム供給源であり、ナトリウムやカリウムも同様である。[[水蒸気]]も存在しており、これは彗星の表面が崩壊して生じたものと、太陽風の水素と岩石由来の酸素が[[スパッタリング]]を起こして生成さえるもの、永久影にある水の氷が昇華して発生するものがある。探査機メッセンジャーによる水の存在に関連するO<sup>+</sup>、OH<sup>-</sup>、H<sub>2</sub>O<sup>+</sup>などの[[イオン]]発見は、驚きをもって受け止められた<ref>{{cite book | author=Hunten, D. M.; Shemansky, D. E.; Morgan, T. H. | year=1988 | publisher=University of Arizona Press | isbn=0-8165-1085-7 | chapter=The Mercury atmosphere | title=Mercury | chapterurl=http://www.uapress.arizona.edu/onlinebks/Mercury/MercuryCh17.pdf | accessdate=2011-03-19|language=英語}}</ref><ref>{{cite news | first=Emily | last=Lakdawalla | date=July 3, 2008 | title=MESSENGER Scientists 'Astonished' to Find Water in Mercury's Thin Atmosphere | url=http://www.planetary.org/news/2008/0703_MESSENGER_Scientists_Astonished_to.html | accessdate=2011-03-19|language=英語}}</ref>。これら発見されたイオンの量から、科学者らは水星の表面は太陽風に吹き晒されている状態にあると推測した<ref>{{cite journal | author=Zurbuchen, Thomas H. ''et al.'' | title=MESSENGER Observations of the Composition of Mercury’s Ionized Exosphere and Plasma Environment | journal=Science | volume=321 | issue=5885 | pages=90&ndash;92 | month=July | year=2008 | doi=10.1126/science.1159314 | pmid=18599777}}</ref><ref>{{cite news | publisher=University of Michigan | date=June 30, 2008 | title=Instrument Shows What Planet Mercury Is Made Of | url=http://newswise.com/articles/view/542209/ | accessdate=2011-03-19|language=英語}}</ref>。
=== 鉄成分 ===

水星は太陽系の他のどの天体よりも鉄の存在比が大きい。この高い金属存在量を説明するために、次のようないくつかの[[理論]]が提唱されている。
大気中にナトリウム・カリウム・カルシウムがあることは1980-1990年代に発見され、当初は隕石衝突による地殻の[[蒸発]]がこれらを供給していると考えられた<ref name=Killen2007>{{cite journal|last=Killen|first=Rosemary|coauthors=Cremonese, Gabrielle; Lammer, Helmut ''et al.''|title=Processes that Promote and Deplete the Exosphere of Mercury|year=2007|journal=Space Science Reviews|volume=132|pages=433–509|doi=10.1007/s11214-007-9232-0|ref=Killen2007|url=http://adsabs.harvard.edu/abs/2007SSRv..132..433K}}</ref>。さらに探査機メッセンジャーによってマグネシウムの存在が確認された<ref name=McClintock2009>{{cite journal|last=McClintock|first=William E.|coauthors=Vervack Jr., Ronald J.; Bradley, E. Todd ''et al.''|title=MESSENGER Observations of Mercury’s Exosphere: Detection of Magnesium and Distribution of Constituents|journal=Science|year=2009|volume=324|doi=10.1126/science.1172525|pages=610–613|url=http://adsabs.harvard.edu/abs/2009Sci...324..610M|pmid=19407195|issue=5927}}</ref>。その時点での研究の結果、ナトリウムの供給は惑星磁場に対応する部分からに絞られた。これは水星の表面と磁場が相互作用を起こしていることを示す<ref name="chaikin1" />。
* 水星は元々、よくある[[コンドライト]][[隕石]]と同程度の金属-珪酸塩比を持っていて、質量が今よりも約2.25倍大きかったが、太陽系形成の初期に水星の 1/6 程度の質量を持つ[[原始惑星]]と衝突した。この衝突によって元々の[[地殻]]と[[マントル]]が失われ、核のみが残されたと考えられる。これと同様の説は地球の月の形成を説明する[[ジャイアント・インパクト説|ジャイアント・インパクト理論]]として提唱されている。

* 水星は原始太陽系星雲の歴史のごく初期、まだ太陽からのエネルギー放射が安定化する前にできたとする。この理論では、水星は最初、現在の約2倍の質量を持っていた。しかし、[[原始星]]段階の太陽が収縮するにつれて水星付近の温度が 2,500 - 3,500 K、あるいは 10,000 K 近くにまで上昇し、水星表面の岩石はこの高温によって蒸発して「岩石蒸気」の大気を作ったが、原始太陽系星雲の「星雲風」によって吹き飛ばされた。
=== 温度 ===
* 第2の説と同様に水星の外層が長年にわたる太陽風の直撃によって[[侵食]]されて失われた。
表面の[[平均]][[温度]]は 452 K(179 ℃)であるが<ref name="nssdcMercury" />、温度変化は 90-100 Kから 700 Kにおよぶ<ref name="ESAs&t" /><ref>{{cite book | author=Prockter, Louise | title=Ice in the Solar System | publisher=Johns Hopkins APL Technical Digest | volume=Volume 26 | issue=number 2 | year=2005 | url=http://www.jhuapl.edu/techdigest/td2602/Prockter.pdf |format=PDF| accessdate=2011-03-19|language=英語}}</ref>。水星は公転と自転が共鳴しているため、[[近点]]において特定の2箇所が[[南中]]を迎え最高温度の700Kに達する。この場所は「熱極」と呼ばれ、カロリス盆地とその正反対側が当たる<ref name=Miya63-1/>。[[遠点]]では500K程度になる<ref>{{cite book | first=John S. | last=Lewis | year=2004 | title=Physics and Chemistry of the Solar System | page=463 | edition=2nd | publisher=Academic Press | isbn=0-12-446744-X }}</ref>。日陰部の最低温度は平均110Kほどである<ref>{{cite journal | last=Murdock | first=T. L. | coauthors=Ney, E. P. | title=Mercury: The Dark-Side Temperature | journal=[[Science (journal)|Science]] | year=1970 | volume=170 | issue=3957 | pages=535–537 | url=http://www.sciencemag.org/cgi/content/abstract/170/3957/535 | doi=10.1126/science.170.3957.535 | accessdate=2011-03-19|language=英語| pmid=17799708 }}</ref>。太陽光は地球の太陽定数[[:en:solar constant|(en)]]の4.59-10.61倍に相当し<ref name=MatsuEar33 />、エネルギー総計では 3,566 W/m<sup>2</sup> となる<ref>{{cite book | title=Physics and Chemistry of the Solar System | author=Lewis, John S. | page=461 | publisher=Academic Press | year=2004 | url=http://books.google.com/?id=ERpMjmR1ErYC&pg=RA1-PA461&lpg=RA1-PA461&dq=solar-constant+mercury+-wikipedia+-wiki+-encyclopedia | accessdate=2011-03-19|language=英語| isbn=978-0-12-446744-6}}</ref>。

このような高温に晒されながら、水星には[[氷]]の存在が確認されている。[[極]]に近く深いクレーターの中には太陽光が当たらない[[永久影]]となる部分があり、温度が102K以下に保たれている<ref>{{cite journal | author=Ingersoll, Andrew P.; Svitek, Tomas; Murray, Bruce C. | title=Stability of polar frosts in spherical bowl-shaped craters on the moon, Mercury, and Mars | journal=Icarus | volume=100 | issue=1 | pages=40&ndash;47 | month=November | year=1992 | bibcode=1992Icar..100...40I | doi=10.1016/0019-1035(92)90016-Z }}</ref>。これは1992年<ref>{{cite web | url=http://www-irc.mtk.nao.ac.jp/~fumi/toyo_2006/kouki/2006_k_02.pdf |format=PDF| title=第2回 現在の太陽系の姿|author=吉田二美 | publisher=[[自然科学研究機構]][[国立天文台]] | accessdate=2011-03-11|language=日本語}}</ref>、ゴールドストーン深宇宙通信複合施設[[:en:Goldstone Deep Space Communications Complex|(en)]]の70m[[電波望遠鏡]]と[[超大型干渉電波望遠鏡群]] (VLA)が、水の氷による強い[[レーダー]][[反射]]を観測して確認された<ref>{{cite journal | last=Slade | first=M. A. | coauthors=Butler, B. J.; Muhleman, D. O. | year=1992 | title=Mercury radar imaging — Evidence for polar ice | journal=[[Science (journal)|Science]] | volume=258 | issue=5082 | pages=635–640 | doi=10.1126/science.258.5082.635 | accessdate=2011-03-19|language=英語| pmid=17748898 }}</ref>。この反射現象は他にも原因を考えうるが、天文学者は水の氷が存在する可能性が最も高いと考えている<ref>{{cite web | last=Williams | first=David R. | date=June 2, 2005 | url=http://nssdc.gsfc.nasa.gov/planetary/ice/ice_mercury.html | title=Ice on Mercury | publisher=NASA Goddard Space Flight Center | accessdate=2011-03-19|language=英語}}</ref>。この氷の量は10 {{e|14}}-10{{e|15}}kg程度であり<ref name="Zahnle1">{{cite journal | last=Rawlins |first=K | coauthors=Moses, J. I.; Zahnle, K.J. | title=Exogenic Sources of Water for Mercury's Polar Ice | journal=Bulletin of the American Astronomical Society | year=1995 |volume=27 | bibcode=1995DPS....27.2112R | pages=1117}}</ref>、[[レゴリス]]が覆うことで[[昇華]]から防がれていると考えられる<ref>{{cite journal | author=Harmon, J. K.; Perillat, P. J.; Slade, M. A. | title=High-Resolution Radar Imaging of Mercury's North Pole | journal=Icarus | volume=149 | issue=1 | pages=1&ndash;15 | year=2001 | month=January | doi=10.1006/icar.2000.6544 }}</ref>。なお、地球の[[南極]]に存在する氷は4 {{e|18}}㎏、[[火星]]の南極には10{{e|16}}㎏程度の水の氷があると言われる<ref name="Zahnle1" />。水星の氷の起源は不明だが、[[彗星]]の衝突もしくは水星内部からの放出で生まれたという説が有力である<ref name="Zahnle1" />。

[[File:Mercury Magnetic Field NASA.jpg|thumb|メッセンジャー2008年の観測グラフ。ピークが水星磁場の存在を示している。]]
=== 磁場 ===
水星は59日という遅い自転速度であるにもかかわらず、地球の磁気圏の約1.1%に相当する比較的強い4.9×10<sup>12</sup>[[テスラ|T]]の[[磁気圏]]を持つことがマリーナ10号の観測で発見された<ref name=Miya63-1 /><ref name=russell_luhmann1997>{{cite web | author=Russell, C. T.; Luhmann, J. G. | year=1997 | title=Mercury: Magnetic Field and Magnetosphere | publisher=Space Physics Center, UCLA Institute of Geophysics and Planetary Physics | url=http://www-spc.igpp.ucla.edu/personnel/russell/papers/merc_mag/ | accessdate=2011-03-19|language=英語}}</ref><ref>{{cite book | title=Astronomy: The Solar System and Beyond | first=Michael A. | last=Seeds | year=2004 | isbn=0-534-42111-3 | publisher=Brooks Cole | edition=4th}}</ref><ref>{{cite web | last=Williams | first=David R. | date=January 6, 2005 | url=http://nssdc.gsfc.nasa.gov/planetary/planetfact.html | title=Planetary Fact Sheets | publisher=NASA National Space Science Data Center | accessdate=2011-03-19|language=英語}}</ref>。この磁場は、地球と同じく[[双極子]]である<ref name=Miya63-1 /><ref name="chaikin1">{{cite book | first=J. Kelly | last=Beatty | coauthors=Petersen, Carolyn Collins; Chaikin, Andrew | title=The New Solar System | year=1999 | publisher=Cambridge University Press | isbn=0-521-64587-5 }}</ref>が、地球のように自転軸とのずれはほとんど無い<ref name="qq">{{cite web | author=Staff | date=January 30, 2008 | url=http://messenger.jhuapl.edu/gallery/sciencePhotos/image.php?page=2&gallery_id=2&image_id=152 | title=Mercury’s Internal Magnetic Field | publisher=NASA | accessdate=2011-03-19|language=英語}}</ref>。探査機マリナー10号とメッセンジャーの観測によって、この磁場は安定的なものであることが分かった<ref name="qq" />。

明らかにはなっていないが、この磁場は地球と同様に流体核の循環運動による[[ダイナモ効果]]で生まれている可能性や<ref name=Miya63-1 /><ref>{{cite web| last=Gold | first=Lauren | date=May 3, 2007 | url=http://www.news.cornell.edu/stories/May07/margot.mercury.html | title=Mercury has molten core, Cornell researcher shows | publisher=Cornell University | accessdate=2011-03-19|language=英語}}</ref><ref>{{cite journal | last=Christensen| first=Ulrich R. | title=A deep dynamo generating Mercury's magnetic field| journal=Nature | year=2006 | volume=444 | pages=1056–1058 | doi=10.1038/nature05342 | pmid=17183319 | issue=7122 }}</ref>。水星の核は純粋なニッケルや鉄が[[融解]]できるほどには高い温度を維持していないと考えられているが、[[硫黄]]などの不純物が 0.2 - 5 % ほど核に混入すると融点が適度に低下し、地球と同様に固体の内核と液体の外核に分離する可能性がある<ref name=Miya63-1 />。仮にこのメカニズムで磁場が発生しているならば、液体の外核はおよそ 500 km の厚さを持つと推定される<ref name=Miya63-1 />。また、離心率が高い水星の公転軌道から、太陽が及ぼす潮汐力の影響も考えられる<ref>{{cite journal | last=Spohn | first=T. | coauthors=Sohl, F.; Wieczerkowski, K.; Conzelmann, V. | title=The interior structure of Mercury: what we know, what we expect from BepiColombo | journal=Planetary and Space Science | year=2001 | volume=49 | issue=14–15 | pages=1561–1570 | doi=10.1016/S0032-0633(01)00093-9 }}</ref>。他にも、核とマントルの境界で生じる熱電作用<ref name=Miya63-1 />、過去に起きていたダイナモ効果が消えてしまった後も名残の磁場が固体の磁性体物質に「凍結」しているという理論もある<ref name=Miya63-1 />。後者では核が液体である必要はない。ただし21世紀初頭の時点では、水星磁場は現在も生み出されており、この説はあまり支持されていない<ref name="Watanabe" />。


=== 磁気圏 ===
=== 磁気圏 ===
水星磁場は惑星の周囲で太陽風をそらして[[磁気圏]]をつくり<ref name=Miya63-1 />、宇宙風化作用[[:en:space weathering|(en)]]に抵抗する程度には<ref name="qq" />強力だが、それは地球の大きさに収まる位の範囲でしかない<ref name="chaikin1" />。マリーナ10号の観測では、夜側の磁場圏でエネルギーが低い[[プラズマ]]が観測され、高エネルギー粒子の噴出も見つかった。これは、惑星磁気圏の高い活動を示している<ref name="chaikin1" />。2008年10月6日にメッセンジャーが2度目の[[フライバイ]]を行った際、惑星磁場と繋がったまま水星半径の1/3に相当する800kmの長さに伸びた竜巻のようにねじれた磁気の束と遭遇した。これは、水星磁場が「漏れやすい」性質を持つことを示す。この竜巻は、太陽風が運んだ磁場と惑星磁場が接触した際に発生する。太陽風の通過とともに繋がった磁場は引き出され、渦のようなねじれ構造を持つ。このような、惑星磁場の磁力管が太陽風によって引っぱり出される現象[[:en:flux transfer event|(en)]]は、磁場の壁に穴を空けてしまい、そこから水星表面に影響を及ぼす太陽風が吹き込む事態を起こす<ref name="NASA060209">{{cite web | first=Bill | last=Steigerwald | date=June 2, 2009 | title=Magnetic Tornadoes Could Liberate Mercury's Tenuous Atmosphere | publisher=NASA Goddard Space Flight Center | url=http://www.nasa.gov/mission_pages/messenger/multimedia/magnetic_tornadoes.html | accessdate=2011-03-19|language=英語}}</ref>。磁気再結合[[:en:magnetic reconnection|(en)]]と呼ばれるこのような現象は珍しくなく、地球でも起こっている。ただし現在の観測では、これが生じる速度は地球よりも10倍も速く、水星が太陽に近いことでもこの速さの1/3程度しか説明できない<ref name="NASA060209" />。
水星は自転速度が遅いにもかかわらず、比較的強い[[磁気圏]]を持つ。水星の[[磁場]]の強さは地球の磁気圏の約 1 % である。この磁場は地球と同様に、流体核の循環運動による[[ダイナモ効果]]で生まれている可能性がある。水星の核は純粋な[[ニッケル]]や[[鉄]]が[[融解]]できるほどには温度が高くないと考えられているが、[[硫黄]]などの不純物が 0.2 - 5 % ほど核に混入すると融点が適度に低下し、地球と同様に固体の内核と液体の外核に分離する可能性がある。仮にこのメカニズムで磁場が発生しているならば、液体の外核はおよそ 500 km の厚さを持つと推定される<ref name="pg-mercury" />。


== 座標系 ==
また、水星の磁場は過去に起きていたダイナモ効果が現在消えてしまったものの、その名残の磁場が固体の磁性体物質に「凍結」した結果だという理論もある。その場合は液体の外核を仮定する必要はなくなる。ただし21世紀初頭の時点では、水星磁場は現在も生み出されており、過去の名残ではないという説が有力とされている<ref name="Watanabe" />。
水星の経度は西方向に設定される。水星の場合は[[:en:Hun Kal (crater)|Hun Kal]]という名の小さなクレーターを西経20度として基準に置いている<ref>{{cite web|url=http://astrogeology.usgs.gov/Projects/WGCCRE/constants/iau2000_table1.html|accessdate=2011-03-19|language=英語|title=USGS Astrogeology: Rotation and pole position for the Sun and planets (IAU WGCCRE)}}</ref><ref>{{cite web|url=http://www.nao.ac.jp/koyomi/faq/ephemeris.html |accessdate=2011-03-11|title=こよみ用語解説 惑星の自転軸|publisher=[[国立天文台]]}}</ref>。


=== 自転 ===
== 人類の水星認識 ==
[[ファイル:Mercurius.jpg|200px|left|thumb|俊足の神[[メルクリウス]]。英語Mercuryの[[語源]]となった。]]
[[ファイル:Mercury's orbital resonance.png|thumb|left|水星の公転と自転の関係 - 水星は2回公転する間に3回自転する。]]
=== 古代 ===
1965年に[[レーダー]]観測が行われる以前には、水星の自転は地球の月や他の多くの衛星と同様に、太陽からの潮汐力で[[自転と公転の同期|公転と同期]]しており、常に太陽に同じ面を向けて1公転中に1回自転していると考えられていた。しかし実際には水星の自転と公転は 3:2 の[[共鳴]]関係にある。すなわち、太陽の周囲を2回公転する間に3回自転する。水星の公転軌道の[[離心率]]が比較的大きいため、この共鳴関係は安定して持続している。水星の自転と公転が同期していると考えられた元々の理由は、地球から見て水星が最も観測に適した位置にある時にはいつでも同じ面が見えたからであった。実際にはこれは 3:2 の共鳴の同じ位置にある時に観測していたためだった。この 3:2 の共鳴があるために、水星の[[恒星日]](自転周期)は58.7日なのに対して、水星の[[太陽日]](水星表面から見た太陽の子午線通過の間隔)は176日と、3倍になっている。
水星について記述された最古の観測記録は星図表[[:en:Mul.Apin|Mul.Apin]]であり、これは紀元前14世紀頃の[[アッシリア]]人によって作られたと考えられる<ref>{{cite journal | title=The Latitude and Epoch for the Origin of the Astronomical Lore in Mul.Apin | first=Bradley E. | last=Schaefer | journal=American Astronomical Society Meeting 210, #42.05 | year=2007 | volume=38 | month=May | url=http://cdsads.u-strasbg.fr/abs/2007AAS...210.4205S | pages=157 | publisher=American Astronomical Society}}</ref>。この表における水星の[[楔形文字]]表記は、Udu.Idim.Gu\u<sub>4</sub>.Ud<ref group="注">楔形文字の翻訳には、「MUL」を伴った資料もある。ただしMULはシュメールにおいて「星」を意味し、固有名詞の一部とは考えられない。「4」は、シュメール語とアッカド語の翻訳法において、楔形文字の単語が持つ複数の音節のうちいずれかを指定するためにつけられた参照番号と考えられる。</ref>(the jumping planet、「跳ぶ星」)と訳された<ref>{{cite journal | first=Hermann | last=Hunger |coauthors=Pingree, David | title=MUL.APIN: An Astronomical Compendium in Cuneiform | journal=Archiv für Orientforschung | volume=24 | publisher=Verlag Ferdinand Berger & Sohne Gesellschaft MBH | location=Austria | year=1989 | page=146 }}</ref>。[[バビロニア]]にも紀元前1000年代の記録があり、彼らは[[神話]]に登場する伝達する神ナブー[[:en:Nabu|(en)]]になぞらえた名称をつけていた<ref name="JHU history">{{cite web | year=2008 | author=Staff | url=http://btc.montana.edu/messenger/elusive_planet/ancient_cultures_2.php | title=MESSENGER: Mercury and Ancient Cultures | publisher=NASA JPL | accessdate=2011-03-19|language=英語}}</ref>。


[[古代ギリシア]]では[[ヘーシオドス]](紀元前700年頃?)の時代には知られ、Στίλβων(Stilbon、「微かな光」の意)やἙρμάων (Hermaon)と呼ばれていた<ref>{{cite book |author= H.G. Liddell and R. Scott |coauthors=''rev.'' H.S. Jones and R. McKenzie |title=Greek–English Lexicon, with a Revised Supplement |edition=9th |year=1996 |publisher=Clarendon Press |location=Oxford |isbn=0-19-864226-1 |pages=690 and 1646 }}</ref>。[[ヘラクレイトス]]は、水星と金星が地球でなく太陽の周りを回っていると考えるに値する観測を行った<ref>{{cite web | title=グローバルテクトニクスの新概念 科学における政治的正当性 Part1|author=山内輝子、山内靖喜 | publisher=NCGT | url=http://kei.kj.yamagata-u.ac.jp/ncgt/NewsLetterJ/NCGT19J.pdf |format=PDF | accessdate=2011-03-13 }}</ref>。古代ギリシア世界では、宵の水星に[[ヘルメス]]、明けの水星には[[アポロン]]を対応させていたが、やがてこの2つの星が同一のものであることに気づいた<ref name="Dunne">{{cite book|title=The Voyage of Mariner&nbsp;10 — Mission to Venus and Mercury|author=Dunne, J. A. and Burgess, E.|chapterurl=http://history.nasa.gov/SP-424/ch1.htm|publisher=NASA History Office|year=1978|chapter=Chapter One|url=http://history.nasa.gov/SP-424/}}</ref>。その後、最内周惑星で運行が速いことから、ヘルメスと同一視されていた他の神々の使いである俊足の神[[メルクリウス]]の名があてられ、これが英語のマーキュリー(Mercury = 水星)の[[語源]]となった<ref>{{cite book|title=Astronomy: A Textbook|first=John Charles|last=Duncan|year=1946|publisher=Harper & Brothers|pages=125|quote=The symbol for Mercury represents the Caduceus, a wand with two serpents twined
水星の表面のある場所にいる観測者から見ると、日の出の途中で太陽は[[順行・逆行|逆行]]して一度沈み、その後再び上る、という現象が見られる。これは、水星が[[近日点]]を通過する約4日前に水星の公転速度と自転速度がちょうど等しくなるため、水星表面から見て太陽の見かけの運動が止まって見えるからである。近日点では水星の公転速度は自転速度よりも速くなる。そのために太陽は逆行して見える。近日点通過の4日後には太陽は[[順行・逆行|順行]]に戻る。
around it, which was carried by the messenger of the gods.}}</ref><ref>{{cite book | first=Eugène Michel | last=Antoniadi | coauthors=Translated from French by Moore, Patrick | year=1974 | title=The Planet Mercury | publisher=Keith Reid Ltd | location=Shaldon, Devon | pages=9–11 | isbn=0-904094-02-2 }}</ref>。


[[古代中国]]で水星は「辰星」の名で知られ、方角の「北」、[[五行思想]]の「水」と対比させていた<ref>{{cite book| first=David H.| last=Kelley | coauthors=Milone, E. F.; Aveni, Anthony F. | year=2004 | title=Exploring Ancient Skies: An Encyclopedic Survey of Archaeoastronomy | publisher=Birkhäuser | isbn=0-387-95310-8 }}</ref>。現代でも、中国、[[日本]]、[[韓国]]、[[ベトナム]]では[[漢字]]で「水星」と書かれ、五行思想の反映が見られる。[[インド神話]]では、水星には水曜日を司る神ブダ[[:en:Budha|(en)]]の名が与えられる<ref>{{cite book | first=R.M. | last=Pujari | coauthors=Kolhe, Pradeep; Kumar, N. R. | year=2006 | title=Pride of India: A Glimpse Into India's Scientific Heritage | publisher=Samskrita Bharati | isbn=81-87276-27-4 }}</ref>。曜日との関連は、[[ゲルマン人]]の思想[[:en:Germanic paganism|(en)]]でも神[[オーディン]]が水星と水曜日を司るという考えがある<ref>{{cite book | first=Michael E. | last=Bakich | year=2000 | title=The Cambridge Planetary Handbook | publisher=Cambridge University Press | isbn=0-521-63280-3 }}</ref>。
水星の自転軸の傾きは惑星の中で最も小さく、わずか 0.01度しかない。これは2番目に傾斜が小さい木星の値(約3.1度)に比べても1/300と非常に小さい値である。このため水星の赤道上にいる観測者から見ると、太陽はいつもほとんど天頂を通過し、0.01度程度しか南北に動かないことになる。


[[マヤ文明]]では水星は[[フクロウ]]に喩えられ、1羽という時と、朝夕それぞれ2羽の計4羽と考えられることもあった。彼らは地下世界からの使者と考えられた<ref>{{cite book | first=Susan | last=Milbrath | year=1999 | title=Star Gods of the Maya: Astronomy in Art, Folklore and Calendars | publisher=University of Texas Press | isbn=0-292-75226-1 }}</ref>。
=== 軌道 ===
水星の[[軌道離心率]]は太陽系の惑星の中でもっとも大きく、[[近日点]]が 0.307 AU (46 {{e|6}} km) で[[遠日点]]が 0.467 AU (70 {{e|6}} km) という大きな楕円軌道を描いている。この軌道の近日点はゆっくりと移動(近日点自体が太陽の周りを周回)しており、その移動の度合いは100年で574[[秒 (角度)|秒]]である。このうち531秒は金星など他の惑星からの重力効果で説明できたが、残り43秒については[[アイザック・ニュートン|ニュートン]]の[[古典力学]]では説明できなかった。このため、ある条件で[[逆2乗の法則]]が成り立たなくなるという説や、水星の内側にもう1つ惑星があるという説が現れた([[バルカン (惑星)|バルカン]]参照)。このニュートン力学では説明できなかった43秒は、後に[[アルベルト・アインシュタイン|アインシュタイン]]の[[一般相対性理論]]によって「太陽の重力により時空が歪んだ結果」として説明づけられた。


== 人類と水星 ==
=== 中世 ===
[[Image:Shatir500.jpg|thumb|200px|left|[[イブン・アル=シャーティル]]の天体モデルにも水星が描かれている。]]
=== 歴史と神話 ===
中世[[イスラム]]世界では、11世紀に[[アンダルス]]の天文学者[[アッ=ザルカーリー]]が水星の公転軌道が卵や松の実のような楕円形だと主張した。ただし彼の天文学理論や計算に、この考えは反映されなかった<ref>{{cite journal | author=Samsó, Julio; Mielgo, Honorino | url=http://articles.adsabs.harvard.edu/full/1994JHA....25..289S | title=Ibn al-Zarqālluh on Mercury | journal=Journal for the History of Astronomy | volume=25 | year=1994 | pages=289–96 [292] }}</ref><ref>{{cite journal | first=Willy | last=Hartner | title=The Mercury Horoscope of Marcantonio Michiel of Venice | journal=Vistas in Astronomy | volume=1 | year=1955 | pages=118-122}}</ref>。12世紀には[[イブン・バーッジャ]]が「太陽面にある2つの黒い点」を観察した。これは、[[水星の日面通過|水星]]か[[金星の日面通過]]またはその両方だと、13世紀にマラーゲ天文台[[:en:Maragheh observatory|(en)]]のクトゥブッディーン・シーラーズィー[[:en:Qotb al-Din Shirazi|(en)]]が述べた<ref>{{cite conference | title=History of oriental astronomy: proceedings of the joint discussion-17 at the 23rd General Assembly of the International Astronomical Union, organised by the Commission 41 (History of Astronomy), held in Kyoto, August 25–26, 1997 | first=S. M. Razaullah | last=Ansari | publisher=[[Springer Science+Business Media|Springer]] | year=2002 | isbn=1402006578 | page=137}}</ref>。なお現代では、この種類の中世の報告は太陽[[黒点]]を見ていたものとも取り扱われる<ref>{{cite journal | last=Goldstein | first=Bernard R. | year=1969 | title=Some Medieval Reports of Venus and Mercury Transits | month=December | journal=Centaurus | volume=14 | issue=1 | pages=49–59 | doi=10.1111/j.1600-0498.1969.tb00135.x | bibcode=1969Cent...14...49G }}</ref>。
水星は[[シュメール]]人の時代([[紀元前]]3000年)から知られており、Ubu-idim-gud-ud と呼ばれていた。古い記録では[[バビロニア]]人により観測が行われており、gu-ad 又は gu-utu と名付けられていた。


インドでは、15世紀に[[ケーララ州]]の数学・天文学派[[:en:Kerala school of astronomy and mathematics|(en)]]のニラカンタ・ソマヤジ[[:en:Nilakantha Somayaji|(en)]]が、16世紀[[デンマーク]]の[[ティコ・ブラーエ]]に先立ち、太陽の周囲を水星と地球が周回する太陽系モデルを構築した<ref>{{cite journal | author=Ramasubramanian, K.; Srinivas, M. S.; Sriram, M. S. | title=Modification of the Earlier Indian Planetary Theory by the Kerala Astronomers (c. 1500 AD) and the Implied Heliocentric Picture of Planetary Motion | journal=Current Science | volume=66 | year=1994 | pages=784–790 | url=http://www.physics.iitm.ac.in/~labs/amp/kerala-astronomy.pdf | accessdate=2011-03-19|language=英語}}</ref>。
古代ギリシアの[[ヘラクレイトス]]は、水星と金星が地球でなく太陽の周りを回っていると考えていた。[[ギリシャ]]で水星が5つの惑星の一つと認識が定着するのは[[プラトン]]の時代からのようである(『エピノミス』)。
古代ギリシア人は、水星に[[ヘルメス]]を対応させた(宵の水星と明けの水星が一つの天体だと気づく以前は、明けの水星には[[アポロン]]を充てていた)。これは、最内周惑星で運行が速いことから、他の神々の使いである俊足の神の名を冠したものである。ヘルメスは古代ローマでは[[メルクリウス]]と同一視され、メルクリウスは英語のマーキュリー(''Mercury'' = 水星)の[[語源]]である。
<!-- 以下は水星の説明ではなくヘルメスの説明なので、[[ヘルメス]]の項に書くべき。
ヘレニズム時代には、エジプト神話の学問の神[[トート]]と融合し(ヘルメス・トート)、さらに神秘思想の中で[[ヘルメス・トリスメギストス]]という神人とされた。彼の名前に帰される[[ヘルメス文書]]が中世の[[錬金術師]]に尊ばれた。ヘルメス・トリスメギストスは、[[賢者の石]]を手に入れたという。
-->


=== 地上からの観測 ===
1639年には[[イタリア]]の[[ジョバンニ・ズッピ]]が望遠鏡を使って水星を観測し、水星にも金星や月と同様に満ち欠けがあることを発見した。これによって、水星が太陽の周りを回っていることが確実になった。
[[File:Mercury transit 1.jpg|thumb|[[水星の日面通過]]。中心下部にある小さな黒い点が水星である。太陽左の縁に見られる黒い部分は太陽黒点である。]]
望遠鏡を用いた水星観測は17世紀初めに[[ガリレオ・ガリレイ]]が手がけたが、天体の相[[:en:planetary phase|(en)]]を確認するには充分な機能を発揮しなかった。しかし1631年には[[ピエール・ガッサンディ]]が、[[ヨハネス・ケプラー]]が予告した[[通過 (天文)|天体の通過]]を望遠鏡で観測した。1639年には[[イタリア]]の[[ジョバンニ・ズッピ]]が望遠鏡を使って水星を観測し、金星や月と同様に満ち欠けがあることを発見した。これによって、水星が太陽の周りを回っていることが確実になった<ref name=strom/>。惑星同士が交差する[[掩蔽]]は非常に稀な天体現象だが、1737年5月28日に水星と金星で起こった掩蔽は[[グリニッジ天文台]]の[[ジョン・ベヴィス]]によって観察された<ref>{{cite journal |last=Sinnott |first=RW |authorlink= |coauthors=Meeus, J |year=1986 |month= |title=John Bevis and a Rare Occultation |journal=Sky and Telescope |volume=72 |issue= |pages=220 |id= |url=http://adsabs.harvard.edu/abs/1986S&T....72..220S | accessdate=2011-03-19|language=英語|quote= }}</ref>。水星と金星が起こす次の掩蔽は2133年12月3日である<ref>{{cite book | first=Timothy | last=Ferris | year=2003 | title=Seeing in the Dark: How Amateur Astronomers | publisher=Simon and Schuster | isbn=0-684-86580-7 }}</ref>。


水星は太陽に接近しているため、観測するのは非常に困難である。水星軌道周期の約半分に相当する期間は、太陽の光に埋もれてしまって見ることができない。またそれ以外の時期でも、朝か夕方のごく短い時間しか観測できない<ref>{{cite journal|last=Baumgardner|first=Jeffrey|coauthors=Mendillo, Michael; Wilson, Jody K.|title=A Digital High-Definition Imaging System for Spectral Studies of Extended Planetary Atmospheres. I. Initial Results in White Light Showing Features on the Hemisphere of Mercury Unimaged by ''Mariner'' 10|journal=The Astronomical Journal|year=2000|volume=119|pages=2458&ndash;2464|doi=10.1086/301323}}</ref>。
=== 占星術 ===
水星は[[七曜]]・[[九曜]]の1つで、[[10大天体]]の1つである。


地球から見た水星にも、[[金星]]や月のような満ち欠けの相が見られる。内合の時に「新水星」、外合の時に「満水星」となるが、これらの時期には太陽と同時に上ったり沈んだりするために、見ることはできない。最大離角の時には半分欠けた形になる。[[西方最大離角]]の時には日の出前に最も早く上り、[[東方最大離角]]の時には日没後に最も遅く沈む。最大離角の値は、近日点ならば17.9度、遠日点ならば27.8度である<ref name=elongation>{{cite web|title=Mercury Chaser's Calculator|publisher=Fourmilab Switzerland|author=John Walker|url=http://www.fourmilab.ch/images/3planets/elongation.html| accessdate=2011-03-19|language=英語}} (look at 1964 and 2013)</ref><ref name=MercHorizons>{{cite web|title=Mercury Elongation and Distance|url=http://home.comcast.net/~kpheider/Mercury.txt| accessdate=2011-03-19|language=英語}} &mdash;Numbers generated using the Solar System Dynamics Group, [http://ssd.jpl.nasa.gov/horizons.cgi?find_body=1&body_group=mb&sstr=1 Horizons On-Line Ephemeris System]</ref>。しかし金星とは異なり、最も明るくなるのは「半月」形と「満月」形の間の相である(金星では「新月」形と「半月」形の間で最も明るくなる)。この理由は各相にある時の地球からの距離による。水星では内合(「新水星」)と外合(「満水星」)の時の地球からの距離の差は3倍以下だが、金星では6.5倍にもなる。水星が内合になる周期は平均すると116日だが<ref name="nssdcMercury" />、軌道の離心率が大きいために実際には111日から121日まで変化する。同じ理由で、地球から見て逆行する期間も8日から15日まで変化する。
[[西洋占星術]]では、[[双児宮]]と[[処女宮]]の[[支配星]]で、吉星である。流動性を示し、[[通信]]・[[交通]]、[[商売]]、[[旅行]]、[[兄弟]]に当てはまる<ref>[[石川源晃]]『【実習】占星学入門』 ISBN 4-89203-153-4</ref>。


このような観測の難しさから、水星の理解は他の惑星と比べて遅れた。1800年、[[ヨハン・シュレーター]]は水星表面の観察を行い。高さ20kmの山脈が存在すると主張した。[[フリードリヒ・ヴィルヘルム・ベッセル]]はシュレーターの観察結果から、自転時間を24時間、自転軸の傾斜が70度だという誤った見積もりを発表した<ref name="sao188r">{{cite journal | last=Colombo | first=G. | coauthors=Shapiro, I. I. | title=The Rotation of the Planet Mercury | journal=SAO Special Report #188R | url=http://adsabs.harvard.edu/abs/1965SAOSR.188.....C | accessdate=2011-03-19|language=英語| volume=188 | date=11/1965 }}</ref>。1880年代になって、[[ジョヴァンニ・スキアパレッリ]]がより精確な惑星写像を取り、その結果から自転周期は88日であると示唆するとともに、公転も潮汐力から同期した状態にあると考えた<ref>{{cite journal|last=Holden |first=E. S. |year=1890 |title=Announcement of the Discovery of the Rotation Period of Mercury [by Professor Schiaparelli] |journal=Publications of the Astronomical Society of the Pacific |volume=2 |issue=7 |pages=79 |url=http://adsabs.harvard.edu/abs/1890PASP....2...79H |accessdate=2011-03-19|language=英語|doi=10.1086/120099 }}</ref>。惑星写像への取り組みは引き続き行われ、1934年には[[ユジェーヌ・ミカエル・アントニアディ]]が観測結果と地図を載せた本を出版した<ref name="chaikin1" />。そこには、数多いアルベド地形[[:en:albedo features|(en)]](天体面の明暗模様)が反映され、「アントニアディ・マップ」と呼ばれた<ref>{{cite book|url=http://history.nasa.gov/SP-423/sp423.htm|title=Atlas of Mercury|publisher=[[NASA]] Office of Space Sciences|author=Merton E. Davies, et al.|year=1978|chapter=Surface Mapping|chapterurl=http://history.nasa.gov/SP-423/surface.htm| accessdate=2011-03-19|language=英語}}</ref>。
=== 惑星記号 ===
[[ファイル:Mercury symbol.ant.png|right]]
ヘルメスの杖・[[ケリュケイオン]]([[ローマ神話]]ではカドゥケウス、二匹の蛇の絡んだ杖)を図案化したものが、[[占星術]]・[[天文学]]を通して用いられる。ヘルメスは[[水銀]]とも関連付けられたため、[[錬金術]]では水銀の[[元素記号]]として使われた。ケリュケイオンは、[[商業]]や[[交通]]のシンボルでもあり、[[一橋大学]]やいくつかの商業校の[[校章]]などに現在も用いられている。


1962年6月、ヴラジミル・コテルニコフ[[:en:Vladimir Kotelnikov|(en)]]率いる[[ソヴィエト連邦]][[ロシア科学アカデミー|科学アカデミー]]情報通信研究所([[:en:Institute of Radio-engineering and Electronics|Institute of Radio-engineering and Electronics]])は、水星に[[レーダー]]信号を発信し反射を利用した観測を初めて行った。これはレーダーを利用した惑星観測の皮切りとなった<ref>{{cite journal |first= J. V. |last=Evans | coauthors=Brockelman, R. A.; Henry, J. C.; Hyde, G. M.; Kraft, L. G.; Reid, W. A.; Smith, W. W. | title=Radio Echo Observations of Venus and Mercury at 23 cm Wavelength | year=1965 | journal=Astronomical Journal | volume=70 | url=http://articles.adsabs.harvard.edu/abs/1965AJ.....70..486E/0000487.000.html | pages=487&ndash;500 | accessdate=2011-03-19|language=英語| doi=10.1086/109772 }}</ref><ref>{{cite book | last=Moore | first=Patrick | title=The Data Book of Astronomy | page=483 | year=2000 | publisher=CRC Press | location=New York | url=http://books.google.com/books?lr=&as_brr=3&q=kotelnikov+1962+mercury&btnG=Search+Books | isbn=0-7503-0620-3}}</ref><ref>{{cite book | title=To See the Unseen: A History of Planetary Radar Astronomy | url=http://history.nasa.gov/SP-4218/sp4218.htm | first=Andrew J. | last=Butrica | publisher=[[NASA]] History Office, Washington D.C. | year=1996 | chapter=Chapter 5 | chapterurl=http://history.nasa.gov/SP-4218/ch5.htm | isbn=0-16-048578-9 }}</ref>。3年後に、アメリカのゴードン・ペッティンギル[[:en:Gordon Pettengill|(en)]]らが[[プエルトリコ]]の[[アレシボ天文台]]300m径[[電波望遠鏡]]を用いた観測を行い、最終的に水星の自転周期が59日であることを突き止めた<ref>{{cite journal | last=Pettengill | first=G. H. |coauthors=Dyce, R. B. | title=A Radar Determination of the Rotation of the Planet Mercury | journal=[[Nature (journal)|Nature]] | volume=206 | issue= 1240 | pages= 451–2 | year= 1965 |doi=10.1038/2061240a0 }}</ref><ref>[http://scienceworld.wolfram.com/astronomy/Mercury.html Mercury] at Eric Weisstein's 'World of Astronomy'</ref>。水星の自転は公転と同期していると広く考えられていたため、この発見は驚きをもって受け止められた。同期していれば常に影となる半球は非常に冷たくなるはずだが、電波計測の結果は、予想よりもはるかに高い温度を示していた。それでも天文学者の中には風のような熱を分配する何かしら強力な機構を想定するなど、同期説を簡単には手放さない者もいた<ref>{{cite book | first=Bruce C. | last=Murray | coauthors=Burgess, Eric | year=1977 | title=Flight to Mercury | publisher=Columbia University Press | isbn=0-231-03996-4 }}</ref>。
なお、医療の[[シンボル]]である[[アスクレピオス]]の杖は、[[デザイン]]は似ているが、ヘルメスとは無関係な記号である。


公転と自転の比率が1対1ではないと提言したのは[[イタリア]]の天文学者ジュゼッペ・コロンボ[[:en:Giuseppe Colombo|(en)]]であり、彼は公転が自転周期の2/3に相当すると述べた<ref>{{cite journal | last=Colombo | first=G. | title=Rotational Period of the Planet Mercury | journal=Nature | volume=208 | pages=575 | year=1965 | doi = 10.1038/208575a0 | accessdate=2011-03-19|language=英語| url=http://adsabs.harvard.edu/abs/1965Natur.208..575C }}</ref>。この証明は、マリナー10号から得られたデータで裏づけされた<ref>{{cite web | month=October | year=1976 | author=Davies, Merton E. et al. | url=http://history.nasa.gov/SP-423/mariner.htm | title=Mariner&nbsp;10 Mission and Spacecraft | work=SP-423 Atlas of Mercury | publisher=NASA JPL | accessdate=2011-03-19|language=英語}}</ref>。これは、スキアパレッリとアントニアディの地図が正しいことを示すとともに、他の天文学者が観察した水星表面は2パターンある公転・自転関係のひとつだけを見ていたわけではなく、観測手段が未発達だったために彼らが目にした太陽方向に向けられた表面の違いをさしあたり無視していたことを示した<ref name="sao188r" />。
=== 水星の観測 ===
水星は太陽に接近しているため、観測するのは非常に困難である。水星の軌道周期の約半分の期間は、太陽の光に埋もれてしまって見ることができない。またそれ以外の時期でも、朝か夕方のごく短い時間しか観測できない。


[[File:Merc fig2sm.jpg|thumb|right|200px|アレシボ天文台が観測した極のクレーター。水の氷が存在する可能性がある。<ref>{{cite web|title=Introduction to Planetary Radar – Mercury |publisher=Fourmilab Switzerland|author=[[NASA]] |url=http://www.naic.edu/%7epradar/radarpage.html | accessdate=2011-03-19|language=英語}}</ref>]]
地球から見た水星にも、[[金星]]や月のような満ち欠けの相が見られる。内合の時に「新水星」、外合の時に「満水星」となるが、これらの時期には太陽と同時に上ったり沈んだりするために、見ることはできない。最大離角の時には半分欠けた形になる。[[西方最大離角]]の時には日の出前に最も早く上り、[[東方最大離角]]の時には日没後に最も遅く沈む。最大離角の値は、近日点ならば18.5度、遠日点ならば28.3度である。しかし金星とは異なり、最も明るくなるのは「半月」形と「満月」形の間の相である(金星では「新月」形と「半月」形の間で最も明るくなる)。この理由は各相にある時の地球からの距離による。水星では内合(「新水星」)と外合(「満水星」)の時の地球からの距離の差は3倍以下だが、金星では6.5倍にもなる。水星が内合になる周期は平均すると116日だが、軌道の離心率が大きいために実際には111日から121日まで変化する。同じ理由で、地球から見て逆行する期間も8日から15日まで変化する。
地上からの観測は光を反射しない部分を知る手段に乏しく、水星の基本的な特性は探査機を打ち上げて初めて理解できた。しかしながら、近年は技術的進歩が進み、地上観測からでも多くの情報を入手できるようになった。2000年、[[ウィルソン山天文台]]の1.5mヘール望遠鏡で高解像度のラッキーイメージング[[:en:lucky imaging|(en)]]観測が行われ、マリナー10号では得られなかった水星表面部分の画像撮影に成功した<ref>{{cite journal | last=Dantowitz | first=R. F. | coauthors=Teare, S. W.; Kozubal, M. J. | title=Ground-based High-Resolution Imaging of Mercury | journal=Astronomical Journal | volume=119 | pages=2455&ndash;2457 | year= 2000 | url=http://ukads.nottingham.ac.uk/cgi-bin/nph-bib_query?bibcode=2000AJ....119.2455D&amp;db_key=AST | doi = 10.1016/j.asr.2005.05.071 }}</ref>。後の解析で、そこにはカロリス盆地を越え、スキナカス盆地[[:en:Skinakas Basin|(en)]]の2倍に相当する大きさの巨大な二重クレーターが発見された<ref name=Ksa06>{{cite journal|author = L. V. Ksanfomality|title=Earth-based optical imaging of Mercury| journal= Advances in Space Research |volume= 38|pages= 594|year= 2006|url= http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2006AdSpR..38..594K&amp;db_key=AST&amp;data_type=HTML&amp;format=&amp;high=461152a03222956|doi=10.1016/j.asr.2005.05.071}}</ref>。その後もアレシボ天文台による観測で、水星表面の大部分は5kmの解像度で撮影された。この中には、極にあり影に水の氷が存在する可能性を持つクレーターも含まれていた<ref name=Harm06>{{cite journal|author =Harmon, J. K. et al.|title= Mercury: Radar images of the equatorial and midlatitude zones| journal= Icarus |volume= 187|pages= 374|year= 2007|url= http://adsabs.harvard.edu/abs/2007Icar..187..374H | doi = 10.1016/j.icarus.2006.09.026}}</ref>。


=== 水星への到達 ===
=== 水星への到達 ===
地球から水星に到達するためには高い技術的ハードルがある。水星の軌道は地球に比べて3倍も太陽に近いため、地球から打ち上げた[[宇宙機]]を水星重力に捕らえさせるためには、太陽の[[重力井戸]]を 9,100万 km 以上も下らなくてはならない。もしも静止状態からスタートできるならば宇宙機太陽に向かって単純に落下していけばいいので、(水星の傍を通過するだけなら)ΔVや[[エネルギー]]を全く必要としない。しかし、実際に地球から飛び立つ場合には、地球の公転速度が約 30 km/s あため宇宙機はかなり大きな[[角運動量]]を持っており、太陽方向へ向かうはこれを打ち消さなければならないよって宇宙機は、時間はかかる速度をまり落とさずに水星軌道まで到達できる[[ホーマン遷移軌道]]に入る。
地球から水星に到達するためには高い技術的ハードルがある。水星の軌道は地球に比べて3倍も太陽に近いため、地球から打ち上げた[[宇宙機]]を水星重力に捕らえさせるためには、太陽の[[重力井戸]]を 9,100万 km 以上も下らなくてはならない。また軌道速度は地球約 30 km/sに対し水星は48 km/sでり、そのため宇宙機が水星の[[ホーマン遷移軌道]]に入るために変更しなければならない速度差ΔVは他の惑星探査りも多くなってしまう問題がある.<ref name="DunneCh4">{{cite book|title=The Voyage of Mariner&nbsp;10 — Mission to Venus and Mercury|author=Dunne, J. A. and Burgess, E.|chapterurl=http://history.nasa.gov/SP-424/ch4.htm|publisher=NASA History Office|year=1978|chapter=Chapter Four|url=http://history.nasa.gov/SP-424/| accessdate=2011-03-19|language=英語}}</ref>


水星探査では、太陽の重力井戸を下る運動をするために位置エネルギーが運動エネルギーとなって宇宙機の速度が増す。しかし、水星の周回軌道に入ることや着陸を行おうとすると、急速に速度を落とさなければならず、そのために宇宙機のエンジンを使う必要が生じる。水星は大気が薄いため[[空力ブレーキ]]の効果は期待できない。計算では、水星探査に使われるエネルギーは太陽系外へ向かうよりも多くなる。これらが、水星探査機の実現回数が少ない理由である<ref>{{ cite journal | last=Leipold | first=M. | coauthors=Seboldt, W.; Lingner, S.; Borg, E.; Herrmann, A.; Pabsch, A.; Wagner, O.; Bruckner, J. | title=Mercury sun-synchronous polar orbiter with a solar sail | year=1996 | month=July | journal=Acta Astronautica | volume=39 |issue=1 | pages = 143&ndash;151 | doi=10.1016/S0094-5765(96)00131-2 }}</ref>。
これに加えて、太陽の重力井戸を下って運動していくと、最初に持っていたポテンシャルエネルギーが運動エネルギーとなって宇宙機の速度が増す。宇宙機が水星近くに達した時には速度が大き過ぎて、着陸したり安定な水星周回軌道に入れないことになってしまう。急な崖に道路が付いていて、崖の麓で別の道路と合流しているという場合を想像すると、地球から水星までの旅はある時点までこの崖をブレーキなしで下り、それからゆっくりと麓の道に合流するようなものである。しかも、水星には大気がないので、水星に近づいた宇宙機は水星大気を使って減速することはできず、ロケットを使う必要がある。これらの理由によって、{{要出典範囲|水星の周回軌道に入る宇宙機は、太陽系を脱出するよりも多くの燃料を必要とする(ただし他の惑星の周回軌道に入る飛行では、減速のために、さらに多くの燃料を要する)|date=2010年10月}}。<!--火星や木星の周回軌道に入るのにも太陽系脱出より多くの燃料が必要だとしたら、水星のばあいだけ特筆するようなことだろうか。実際の値を調べ、比較する必要がある。-->

このような問題があるため、水星へ向かう探査はほとんど行われていない。また、実際のミッションでは、目的の軌道に直接遷移するのではなく、より効率の良い[[スイングバイ]]を用いることが多い。


[[ファイル:Mariner10.gif|thumb|200px|right|水星探査機マリナー10号]]
[[File:Drawing back side-spacecraft MESSENGER-fr.png|thumb|200px|right|探査機メッセンジャー]]
=== 水星探査 ===
=== 水星探査 ===
水星に向けられた初の探査機は、1973年に打ち上げた[[アメリカ航空宇宙局]] (NASA) の[[マリナー10号]]であった<ref name="Dunne" />。同機は1974年に3度にわたって水星に接近。写真撮影や表面温度の観測を行い、惑星表面の特徴的な地形を数多く知らしめた<ref name="DunneCh4" /><ref>{{cite web | month=October | year=1976 | first=Tony | last=Phillips | url=http://www.nasa.gov/vision/universe/solarsystem/20oct_transitofmercury.html | title=NASA 2006 Transit of Mercury | work=SP-423 Atlas of Mercury | publisher=NASA | accessdate=2011-03-19|language=英語}}</ref>。しかし探査可能時間が短く、惑星の夜の部分は撮影ができず、情報は全球の45%以下に止まった<ref name="USATMessenger">{{cite news|url=http://www.usatoday.com/tech/news/2004-08-16-mercury-may-shrink_x.htm|title=MESSENGER to test theory of shrinking Mercury|publisher=USA Today|author=Tariq Malik|date=August 16, 2004 | accessdate=2011-03-19|language=英語}}</ref>。
[[ファイル:Mariner10.gif|thumb|水星探査機マリナー10号]]
[[1973年]]に打ち上げた[[アメリカ航空宇宙局]] (NASA) の探査機[[マリナー10号]]が、[[1974年]]に3度にわたって水星に接近。写真撮影や表面温度の観測を行った。


[[2004年]][[8月3日]]、アメリカ航空宇宙局の[[メッセンジャー (探査機)|メッセンジャー]] が打ち上げられ、地球、金星を[[スイングバイ]](フライバイ)しながら水星へ向かって航行し、[[2008年]]1月には水星での最初のスイングバイを行った。今後、[[2011年]]3月には水星の周回軌道に入り、継続的な観測活動を開始する予定になっている。
2004年8月3日、アメリカ航空宇宙局の[[メッセンジャー (探査機)|メッセンジャー]] が打ち上げられ、地球、金星を[[スイングバイ]](フライバイ)しながら水星へ向かって航行し<ref>{{cite web|year=2005|url = http://www.spaceref.com/news/viewsr.html?pid=18956| title = MESSENGER Engine Burn Puts Spacecraft on Track for Venus|publisher = SpaceRef.com | accessdate=2011-03-19|language=英語}}</ref>、2008年1月には水星での最初のスイングバイを行った<ref name="MessCountdown">{{cite web|url= http://messenger.jhuapl.edu/gallery/sciencePhotos/image.php?gallery_id=2&image_id=115|title= Countdown to MESSENGER's Closest Approach with Mercury|date= January 14, 2008 | publisher= Johns Hopkins University Applied Physics Laboratory | accessdate=2011-03-19|language=英語}}</ref>。今後、2011年3月には水星の周回軌道に入り、継続的な観測活動を開始する予定になっている。


==== 計画中 ====
==== 計画中 ====
[[ベピ・コロンボ]]は[[宇宙航空研究開発機構]]と[[欧州宇宙機関]]が共同で打ち上げを計画しえいる探査機である<ref name="ESAColumboGoAhead">{{cite web | title=ESA gives go-ahead to build BepiColombo | date=February 26, 2007 | publisher=[[European Space Agency]] | url=http://www.esa.int/esaSC/SEMC8XBE8YE_index_0.html | accessdate=2011-03-19|language=英語}}</ref>。2014年に打ち上げが予定され、2019年に水星の周回軌道に入り、観測をする計画である<ref name="Bepitelegraph1">{{cite news| url=http://www.telegraph.co.uk/earth/main.jhtml?view=DETAILS&grid=&xml=/earth/2008/01/18/scimerc118.xml| title=Star Trek-style ion engine to fuel Mercury craft | author=Fleming, Nic | publisher=The Telegraph | date=January 18, 2008 | accessdate=2011-03-19|language=英語}}</ref>。これは2機編成であり<ref name=Miya71 />、楕円軌道には磁気計測機を、惑星周回軌道には地形探査装置を搭載した化学燃料ロケットを投入し、水星公転の数年に相当する期間をかけて探査を行う予定である<ref name="ESAColumboGoAhead" />。この地形探査装置は、メッセンジャーと同じく分光計を積載し、赤外線、紫外線、X線など複数の波長で惑星の調査を行う<ref>{{cite web | title=Objectives | publisher=European Space Agency | url=http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=31350 | date=February 21, 2006 | accessdate=2011-03-19|language=英語}}</ref>。
* [[ベピ・コロンボ]]([[宇宙航空研究開発機構|日本]]/[[欧州宇宙機関|欧州]]) - [[2014年]]打ち上げ予定。約6年後に水星の周回軌道に入り、観測をする予定。


== その他 ==
{{節stub}}
=== 惑星記号 ===
[[ファイル:Mercury symbol.ant.png|right]]
ヘルメスの杖・[[ケリュケイオン]]([[ローマ神話]]ではカドゥケウス、二匹の蛇の絡んだ杖)を図案化したものが、[[占星術]]・[[天文学]]を通して用いられる。ヘルメスは[[水銀]]とも関連付けられたため、[[錬金術]]では水銀の[[元素記号]]として使われた。ケリュケイオンは、[[商業]]や[[交通]]のシンボルでもあり、[[一橋大学]]やいくつかの商業校の[[校章]]などに現在も用いられている。


== を扱った作品 ==
=== ===
水星は[[七曜]]・[[九曜]]の1つで、[[10大天体]]の1つである。[[西洋占星術]]では、[[双児宮]]と[[処女宮]]の[[支配星]]で、吉星である。流動性を示し、[[通信]]・交通、[[商売]]、[[旅行]]、[[兄弟]]に当てはまる<ref>[[石川源晃]]『【実習】占星学入門』 ISBN 4-89203-153-4</ref>。
{{節stub}}
(注)この節は英語版[[:en:Mercury in fiction]]からの抄訳である。


=== 小説 ===
== 関連項目 ==
{{Sisterlinks|Mercury}}
* [[ラリー・ニーヴン]]『いちばん寒い場所』(1965年) - [[ノウンスペース]]・シリーズの短編。水星は自転と公転が同期しているという前提で書かれたが、発表される直前にそうではないことが判明してしまったという曰く付きの作品である。
* [[水星の衛星]]
* [[アーサー・C・クラーク]]『[[宇宙のランデヴー]]』(1973年)
* [[ジョン・ヴァーリィ]]『逆行の夏』(1975年) - [[八世界シリーズ]]の短編。
* [[デイヴィッド・ブリン]]『サンダイバー』(1980年)
* [[キム・スタンリー・ロビンソン]] "Mercurial" in ''The Planet on the Table''(1986年)、''Blue Mars''(1996年)
* [[野尻抱介]]『太陽の簒奪者』(2002年)
* [[ベン・ボーヴァ]] ''Mercury'' (2005年)

=== 音楽 ===
* [[グスターヴ・ホルスト]]の組曲『[[惑星 (組曲)|惑星]]』の第3曲「水星、翼のある使者」


== 参考文献 ==
== 参考文献 ==
* {{Cite book | 和書 | author=宮本英昭、平田成、杉田精司、橘省吾 | title=惑星地質学 | publisher=[[東京大学出版会]] | year=2008年 |isbn=978-4-13-062713-9|page=p.63-72|宮本ら2008}}
{{reflist}}
* {{Cite book|和書|author=[[松井孝典]]|year=1996年|title=惑星科学入門|publisher=[[講談社]]|edition=第一刷|isbn=4-06-159222-X|ref=松井『惑星』}}
* {{Cite book|和書|author=編集長:水谷仁|coauthors= |year=2009年|title=[[ニュートン (雑誌)|ニュートン]]別冊 太陽と惑星 改訂版|publisher=[[ニュートンプレス]] |isbn=978-4-315-51859-7|ref=ニュートン (別2009)}}


== 関連項目 ==
== 脚注 ==
=== 注釈 ===
{{Commonscat|Mercury (planet)}}
{{Wikibooks}}
{{脚注ヘルプ}}
{{Reflist|group="注"}}
{{Wiktionary}}
=== 脚注 ===
* [[日面通過]]
{{Reflist|2}}
* [[水星の日面通過]]
=== 脚注2 ===
* [[マリナー10号]]
本脚注は、出典・脚注内で提示されている「出典」を示しています。
* [[メッセンジャー (探査機)|メッセンジャー]]
{{Reflist|group="2-"}}
* [[ベピ・コロンボ]]
* [[水星の衛星]]


== 外部リンク ==
== 外部リンク ==
* [http://www.cgh.ed.jp/TNPJP/nineplanets/mercury.html ザ・ナインプラネッツ日本語版(水星)]
* [http://www.cgh.ed.jp/TNPJP/nineplanets/mercury.html ザ・ナインプラネッツ日本語版(水星)]
* [http://history.nasa.gov/SP-423/sp423.htm Atlas of Mercury—NASA]
* [http://homepage3.nifty.com/silver-moon/planets.htm 惑星の名、名](銀月の部屋より)
*[http://planetarynames.wr.usgs.gov/jsp/SystemSearch2.jsp?System=Mercury Gazeteer of Planetary Nomenclature - Mercury (USGS)]
* [http://web.kyoto-inet.or.jp/people/tiakio/antiGM/hermes.html 反・ギリシア神話 ヘルメス]
* [http://www.solarviews.com/eng/mercury.htm SolarViews.com—Mercury]
* [http://www.astronomycast.com/astronomy/episode-49-mercury/ Astronomy Cast: Mercury]
* [http://www.geody.com/?world=mercury Geody Mercury] World’s search engine that supports [[NASA World Wind]], [[Celestia]], and other applications.
* [http://btc.montana.edu/MESSENGER/Interactives/ANIMATIONS/Day_On_Mercury/day_on_mercury_full.htm A Day On Mercury] flash animation
* [http://www.psrd.hawaii.edu/Archive/Archive-Mercury.html Mercury articles in Planetary Science Research Discoveries]
* [http://www.esa.int/export/esaSC/120391_index_0_m.html ‘BepiColombo’, ESA’s Mercury Mission]
* [http://messenger.jhuapl.edu/ ‘Messenger’, NASA’s Mercury Mission]


{{太陽系}}
{{太陽系}}

2011年3月18日 (金) 15:21時点における版

水星
Mercury
メッセンジャーが撮影した水星
メッセンジャーが撮影した水星
仮符号・別名 辰星
分類 地球型惑星
軌道の種類 内惑星
発見
発見方法 目視
軌道要素と性質
元期:2008年1月1日[1]
太陽からの平均距離 0.38710 AU
平均公転半径 57,910,000 km
近日点距離 (q) 0.3075 AU
遠日点距離 (Q) 0.4667 AU
離心率 (e) 0.20563069
公転周期 (P) 87日 23.3時間
(0.2408467 年)
会合周期 115.88 日
平均軌道速度 47.8725 km/s
軌道傾斜角 (i) 7.0051
近日点引数 (ω) 77.5806 度
昇交点黄経 (Ω) 48.4257 度
平均近点角 (M) 328.1305 度
太陽の惑星
衛星の数 0
物理的性質
赤道面での直径 4,879.4 km [2]
表面積 7.4797 ×107 km2[2]
体積 6.082721 ×1010 km2[2]
質量 3.301 ×1023 kg[2]
地球との相対質量 0.0553[3]
平均密度 5.427 g/cm3[2][3]
表面重力 3.70 m/s2[2][3]
脱出速度 4.25 km/s[2]
自転周期 58日 15.5088時間[2]
(恒星日)
175.84 日
(太陽日)
アルベド(反射能) (球面)0.065-0.071
(幾何学値)0.137-0.147]])[4]
赤道傾斜角 0 度
表面温度 623 K(日中)
103 K(夜間)
表面温度
最低 平均 最高
90 K[5][2] 440 K[3] 700 K[2]
大気の性質
大気圧 10-10 Pa [3]
10-7 Pa[6]
酸素 42%
ナトリウム 29%
水素 22%
ヘリウム 6%
カリウム 0.5%
Template (ノート 解説) ■Project

水星(すいせい、:Mercury)は、太陽系にある惑星の1つで、太陽に最も近い公転軌道を周回する。岩石質の「地球型惑星」に分類され、太陽系惑星の中で大きさ、質量ともに最小のものである[注 1]

概要

太陽系の惑星の中では最も小さい。例えば赤道面での直径 4,879.4km は地球の38%に過ぎない。水星よりも大きな衛星木星ガニメデ土星タイタンがあり、水星自体は衛星やを伴っていない。

天球上での見かけの明るさは -0.4 等から 5.5 等まで変化する。水星は太陽に非常に近いため、日の出前と日没直後のわずかな時間しか観察できず、時期によっては望遠鏡でも見ることが難しい。これは太陽との最大離角が28.3度に過ぎないためである。

アメリカ探査機マリナー10号(1974年 - 1975年)が初めて水星へ接近し、地表の約40%ないし45%の地図が作られた。撮影された映像から、水星には多数のクレーターがあり、と非常によく似た環境だと考えられた。しかし依然として分からないことが多い惑星であるが、2008年に探査を始めたアメリカのメッセンジャーや2014年に打ち上げ予定の日欧共同プロジェクトベピ・コロンボなどによって、探査の進展が期待されている。

軌道

公転

水星の公転周期は約88日である。その軌道離心率約0.21は太陽系惑星の中でもっとも大きく、近日点が 約0.31 AU (46 ×106 km) で遠日点が 約0.47 AU (70 ×106 km) という、太陽を焦点のひとつとする大きな楕円軌道を描いている[7][8]

(上)黄道から10度上方の位置から見下ろした水星の公転軌道。(下)黄道の真横から見た軌道。

公転面は地球の公転面(黄道)に対して7度の傾きがある。その結果、水星の日面通過は黄道に水星があるタイミングに限られ、その頻度は平均7年に1度しか観測されない[9]

この軌道の近日点は太陽の周りを周回する形でゆっくりと移動しており、その度合いは100年で574である。このうち531秒は金星など他の惑星からの重力効果で説明できたが、残り43秒についてはニュートン古典力学では説明できなかった。このため、ある条件で逆2乗の法則が成り立たなくなるという説や、水星の内側にもう1つ惑星があるという説が現れた(バルカン参照)[10]。このニュートン力学では説明できなかった43秒は、後にアインシュタイン一般相対性理論によって「太陽の重力により時空が歪んだ結果」として説明づけられた[11][12]

水星の公転と自転の関係 - 水星は2回公転する間に3回自転する。

自転

水星の公転周期は55日である[7]。1965年にレーダー観測が行われるまで、水星の自転は地球の月や他の多くの衛星と同様に、太陽からの潮汐力によって公転と同期しており、常に太陽に同じ面を向けて1公転中に1回自転していると考えられていた。しかし実際には水星の自転と公転は 2:3 の共鳴関係にある[7][13][14]。すなわち、太陽の周囲を2回公転する間に3回自転する[15]。水星の公転軌道の離心率が比較的大きいため、この共鳴関係は安定して持続している。水星の自転と公転が同期していると考えられた元々の理由は、地球から見て水星が最も観測に適した位置にある時にはいつでも同じ面が見えたからであった。実際にはこれは 2:3 の共鳴の同じ位置にある時に観測していたためだった。この共鳴があるために、水星の恒星日(自転周期)は58.7日なのに対して、水星の太陽日(水星表面から見た太陽の子午線通過の間隔)は176日と、3倍になっている.[16]。誕生直後の水星は8時間程度の速さで自転していたが、太陽の潮汐力によって段々と遅くなり現在の同期状態になったと考えられるが、なぜ2:3の比となったのかは分っていない[13]

水星表面の特定の場所では、水星の1日において日の出の途中で太陽が逆行して一度沈み、その後再び上るという現象が見られる。これは、水星が近日点を通過する約4日前から水星の軌道速度と角度で測定した自転速度(en)がちょうど等しくなるため、水星表面から見て太陽固有運動が止まって見えることに起因する。そこに、近日点である楕円型公転軌道の尖った部分(円弧と長辺の交点)を水星が通り過ぎるために公転による角速度が自転のそれを上回とことが重なり、太陽が逆に進むように見える。近日点通過の4日後には太陽は順行に戻る.[16]

水星の赤道傾斜角(自転軸の傾き)は惑星の中で最も小さく、わずか 0.027度以下でしかない[17]。これは2番目に傾斜が小さい木星の値(約3.1度)に比べても1/300と非常に小さい値である。このため、日の出の位置は2.1以上ぶれない[17]

惑星の物理的性質

水星の内部構造。1:核、2:マントル、3:地殻。
同縮尺の地球型惑星。左から、水星、金星、地球、火星。

内部構造から考えられる水星の起源

水星には半径 1,800 km 程度のが存在する[7]。これは惑星半径の3/4に相当し、水星全体では質量の約 70 % がニッケル[18]金属、30 % が二酸化ケイ素で出来ている[16]

平均密度 5,430 kg/m3は地球と比べわずかに小さい[7][3]。核の比率が大きい割に密度がそれほど高くないのは、地球は自重によって惑星の体積が圧縮され密度が高くなるのに対し、小さな水星は圧縮される割合が低いためである。地球中心部の圧力は366万気圧に達するのに対し、水星中心部は約25-40万気圧にとどまる[18]。しかし、天体の大きさと平均密度の相関関係では、水星は唯一他の地球型惑星が示す傾向から60%程度重い方向に外れている[7]。自重による圧縮を除外して計算された平均密度は、水星が 5,300 kg/m3、地球が 4,000-4,100 kg/m3となり、水星のほうが有意に高い値をとる[18][19]

水星の体積は地球の 5.5 %に相当する。しかし地球の金属核は 17 % にすぎないのに対し、水星の金属核はその 42 % を占める[20][21][22]。核は地球の内核外核のように、固体と液体に分離している可能性がある。核の周りは厚さ600km 程度の岩石質マントルで覆われている[7][23][24]が、これは他の岩石惑星と比べごく薄いためマントルの対流が小規模となり、惑星表面に特有の影響を及ぼした可能性が指摘されている[7]。地殻は、マリナー10号の観測結果から厚さ100-300kmと推測されている[25]

水星は太陽系の他のどの天体よりも鉄の存在比が大きい。この高い金属存在量を説明するために、主に三つの理論が提唱されている。一つ目は、水星は元々ありふれたコンドライト隕石と同程度の金属-珪酸塩比を持ち、その質量が現在よりも約2.25倍大きかったが、太陽系形成の初期に水星の 1/6 程度の質量を持つ原始惑星と衝突した[14]ために元々の地殻マントルの大部分が吹き飛んで失われ、延性を持つ金属核は合体したために比率が高い現在の姿になったという[26][14]。これは地球の月の形成を説明するジャイアント・インパクト理論と同様なメカニズムであり[14]、「巨大衝突説」と呼ばれる[27][28]。また、このような現象は原始惑星形成時から起こり、水星軌道では選択的に金属が集まりやすかったという「選択集積説」も有力な仮説として唱えられている[28][27]

二つ目は、水星が原始太陽系星雲の歴史のごく初期の段階に形成され、その時には未だ太陽からのエネルギー放射が安定化していなかったことが原因という説がある[27]。この理論では、当初水星は現在の約2倍の質量を持っていたが、原始星段階の太陽が収縮するにつれて活動が活発化してプラズマを放出し[28]、このために水星付近の温度が 2,500 - 3,500 K、あるいは 10,000 K 近くにまで加熱された。表面の岩石がこの高温によって蒸発して岩石蒸気となり、これが原始太陽系星雲風によって吹き飛ばされたために地殻部分が痩せ細って薄くなったという[29]。これは「蒸発説」と呼ばれる[27][28]

三つ目の説は、原始太陽系星雲からの太陽風が水星表面に付着していた軽い粒子に抗力を生じさせ、奪い去る現象が重なったというものである[30]。他にも、水星は地殻部分がコアとマントルの冷却よりも先に形成されたため、これが影響したという説もある[31]

これらの各仮説では、水星表面の構成に異なった影響を与えると考えられている。 探査機メッセンジャーと打ち上げが予定されているベピ・コロンボは、この課題を観測する目的を担う予定である[32][33][28]

カロリス盆地。黄色の線はマリナー10号写真から判断された範囲。青はメッセンジャーの写真から改訂された範囲。

地形

当初、水星の地形は望遠鏡によるアルベドの計測で予想された。地域によって反射率に差異があり、これは月の高地のようなリンクルリッジ(en)山脈平野、ルペス(en)絶壁)、ヴァリス(en))などがあるためと推測された[34][35]

1975年のマリナー10号による観測で得た情報から基本的な部分が明らかになった。水星の地表は月の地表と似ており、その特徴は、数十億年単位時間を経て形成される月の海のような平滑面や、全球を覆うさまざまな大きさのクレーターが数多く存在していることにある[36][37][22]。その中でも最も目に付くものは、惑星直径の1/4以上に相当する直径1,300kmほどのクレーター群から成るカロリス盆地である[36][38]。これは、46億年前に水星が形成されて間もなく始まり38億年前まで続いた後期重爆撃期[39]彗星隕石が衝撃を和らげる大気が無い水星に[40]衝突を繰り返すことでクレーターを形成し[35]、当時まだ活発だった火山活動によって盆地マグマで埋まり形成されたと考えられる[36][41][42]

水星の表面はおおまかにいって異なる時代にできた二つの表面によって覆われている。若い方の表面は溶岩が流れ出して形成された軽い地表であり、古い地表よりクレーターが少ない。このような二分化された地形は月の高地-海の関係に似ているが、水星に見られる新旧の地表の違いは月の場合ほど明確ではない[43]

水星の地表を特徴付けるもう一つの地形は、惑星の広い範囲に散在する高さ約2km、長いものでは500km[44]にもなる断崖(線構造)であり[36]、リンクルリッジと呼ばれる[44]。これは水星の内部が冷却され、半径が1-2kmほど縮む過程で形成された「しわ」であると考えられているが[44][45]、太陽の潮汐力の影響という異説も存在する[46]。断層のパターンについて詳細に分析できるようになれば、地形の正確な起源が明らかになると考えられている[43]。また、太陽の潮汐力は地球が月に与える力の約17倍と推測され[46]、そのために水星では赤道部分が膨らむ潮汐変形が起きている。

地殻物質

水星の表面には、鉄酸化物の存在量が他の地球型惑星と比較しても少なく重量比1-3%程度しか無い。これが反射率の高さに繋がっている。代わって、ナトリウム分が多い斜長石や鉄をあまり含まない輝石頑火輝石)が主に占める[36]

大気

水星は重力が小さいため、長く大気を留めておくことは難しい。しかし、ごく薄く分子同士の衝突がほとんど無い無衝突大気の存在が確認されている[36][47][48]。水星の気圧は10-7 Pa(10-12気圧)程度と推測され、その成分は水素ヘリウムの主成分[49]に加え、ナトリウムカリウムカルシウム酸素などが検出されている[36][6][50]

この大気組成は一定しておらず、絶えず供給と放出を繰り返している。水素やヘリウムは太陽風の粒子を水星磁場が捕捉したものと考えられ、やがて宇宙空間に拡散されてゆく。地殻で生じる放射性崩壊もひとつのヘリウム供給源であり、ナトリウムやカリウムも同様である。水蒸気も存在しており、これは彗星の表面が崩壊して生じたものと、太陽風の水素と岩石由来の酸素がスパッタリングを起こして生成さえるもの、永久影にある水の氷が昇華して発生するものがある。探査機メッセンジャーによる水の存在に関連するO+、OH-、H2O+などのイオン発見は、驚きをもって受け止められた[51][52]。これら発見されたイオンの量から、科学者らは水星の表面は太陽風に吹き晒されている状態にあると推測した[53][54]

大気中にナトリウム・カリウム・カルシウムがあることは1980-1990年代に発見され、当初は隕石衝突による地殻の蒸発がこれらを供給していると考えられた[55]。さらに探査機メッセンジャーによってマグネシウムの存在が確認された[56]。その時点での研究の結果、ナトリウムの供給は惑星磁場に対応する部分からに絞られた。これは水星の表面と磁場が相互作用を起こしていることを示す[57]

温度

表面の平均温度は 452 K(179 ℃)であるが[3]、温度変化は 90-100 Kから 700 Kにおよぶ[5][58]。水星は公転と自転が共鳴しているため、近点において特定の2箇所が南中を迎え最高温度の700Kに達する。この場所は「熱極」と呼ばれ、カロリス盆地とその正反対側が当たる[7]遠点では500K程度になる[59]。日陰部の最低温度は平均110Kほどである[60]。太陽光は地球の太陽定数(en)の4.59-10.61倍に相当し[49]、エネルギー総計では 3,566 W/m2 となる[61]

このような高温に晒されながら、水星にはの存在が確認されている。に近く深いクレーターの中には太陽光が当たらない永久影となる部分があり、温度が102K以下に保たれている[62]。これは1992年[63]、ゴールドストーン深宇宙通信複合施設(en)の70m電波望遠鏡超大型干渉電波望遠鏡群 (VLA)が、水の氷による強いレーダー反射を観測して確認された[64]。この反射現象は他にも原因を考えうるが、天文学者は水の氷が存在する可能性が最も高いと考えている[65]。この氷の量は10 ×1014-10×1015kg程度であり[66]レゴリスが覆うことで昇華から防がれていると考えられる[67]。なお、地球の南極に存在する氷は4 ×1018㎏、火星の南極には10×1016㎏程度の水の氷があると言われる[66]。水星の氷の起源は不明だが、彗星の衝突もしくは水星内部からの放出で生まれたという説が有力である[66]

メッセンジャー2008年の観測グラフ。ピークが水星磁場の存在を示している。

磁場

水星は59日という遅い自転速度であるにもかかわらず、地球の磁気圏の約1.1%に相当する比較的強い4.9×1012T磁気圏を持つことがマリーナ10号の観測で発見された[7][68][69][70]。この磁場は、地球と同じく双極子である[7][57]が、地球のように自転軸とのずれはほとんど無い[71]。探査機マリナー10号とメッセンジャーの観測によって、この磁場は安定的なものであることが分かった[71]

明らかにはなっていないが、この磁場は地球と同様に流体核の循環運動によるダイナモ効果で生まれている可能性や[7][72][73]。水星の核は純粋なニッケルや鉄が融解できるほどには高い温度を維持していないと考えられているが、硫黄などの不純物が 0.2 - 5 % ほど核に混入すると融点が適度に低下し、地球と同様に固体の内核と液体の外核に分離する可能性がある[7]。仮にこのメカニズムで磁場が発生しているならば、液体の外核はおよそ 500 km の厚さを持つと推定される[7]。また、離心率が高い水星の公転軌道から、太陽が及ぼす潮汐力の影響も考えられる[74]。他にも、核とマントルの境界で生じる熱電作用[7]、過去に起きていたダイナモ効果が消えてしまった後も名残の磁場が固体の磁性体物質に「凍結」しているという理論もある[7]。後者では核が液体である必要はない。ただし21世紀初頭の時点では、水星磁場は現在も生み出されており、この説はあまり支持されていない[43]

磁気圏

水星磁場は惑星の周囲で太陽風をそらして磁気圏をつくり[7]、宇宙風化作用(en)に抵抗する程度には[71]強力だが、それは地球の大きさに収まる位の範囲でしかない[57]。マリーナ10号の観測では、夜側の磁場圏でエネルギーが低いプラズマが観測され、高エネルギー粒子の噴出も見つかった。これは、惑星磁気圏の高い活動を示している[57]。2008年10月6日にメッセンジャーが2度目のフライバイを行った際、惑星磁場と繋がったまま水星半径の1/3に相当する800kmの長さに伸びた竜巻のようにねじれた磁気の束と遭遇した。これは、水星磁場が「漏れやすい」性質を持つことを示す。この竜巻は、太陽風が運んだ磁場と惑星磁場が接触した際に発生する。太陽風の通過とともに繋がった磁場は引き出され、渦のようなねじれ構造を持つ。このような、惑星磁場の磁力管が太陽風によって引っぱり出される現象(en)は、磁場の壁に穴を空けてしまい、そこから水星表面に影響を及ぼす太陽風が吹き込む事態を起こす[75]。磁気再結合(en)と呼ばれるこのような現象は珍しくなく、地球でも起こっている。ただし現在の観測では、これが生じる速度は地球よりも10倍も速く、水星が太陽に近いことでもこの速さの1/3程度しか説明できない[75]

座標系

水星の経度は西方向に設定される。水星の場合はHun Kalという名の小さなクレーターを西経20度として基準に置いている[76][77]

人類の水星認識

俊足の神メルクリウス。英語Mercuryの語源となった。

古代

水星について記述された最古の観測記録は星図表Mul.Apinであり、これは紀元前14世紀頃のアッシリア人によって作られたと考えられる[78]。この表における水星の楔形文字表記は、Udu.Idim.Gu\u4.Ud[注 2](the jumping planet、「跳ぶ星」)と訳された[79]バビロニアにも紀元前1000年代の記録があり、彼らは神話に登場する伝達する神ナブー(en)になぞらえた名称をつけていた[80]

古代ギリシアではヘーシオドス(紀元前700年頃?)の時代には知られ、Στίλβων(Stilbon、「微かな光」の意)やἙρμάων (Hermaon)と呼ばれていた[81]ヘラクレイトスは、水星と金星が地球でなく太陽の周りを回っていると考えるに値する観測を行った[82]。古代ギリシア世界では、宵の水星にヘルメス、明けの水星にはアポロンを対応させていたが、やがてこの2つの星が同一のものであることに気づいた[83]。その後、最内周惑星で運行が速いことから、ヘルメスと同一視されていた他の神々の使いである俊足の神メルクリウスの名があてられ、これが英語のマーキュリー(Mercury = 水星)の語源となった[84][85]

古代中国で水星は「辰星」の名で知られ、方角の「北」、五行思想の「水」と対比させていた[86]。現代でも、中国、日本韓国ベトナムでは漢字で「水星」と書かれ、五行思想の反映が見られる。インド神話では、水星には水曜日を司る神ブダ(en)の名が与えられる[87]。曜日との関連は、ゲルマン人の思想(en)でも神オーディンが水星と水曜日を司るという考えがある[88]

マヤ文明では水星はフクロウに喩えられ、1羽という時と、朝夕それぞれ2羽の計4羽と考えられることもあった。彼らは地下世界からの使者と考えられた[89]

中世

イブン・アル=シャーティルの天体モデルにも水星が描かれている。

中世イスラム世界では、11世紀にアンダルスの天文学者アッ=ザルカーリーが水星の公転軌道が卵や松の実のような楕円形だと主張した。ただし彼の天文学理論や計算に、この考えは反映されなかった[90][91]。12世紀にはイブン・バーッジャが「太陽面にある2つの黒い点」を観察した。これは、水星金星の日面通過またはその両方だと、13世紀にマラーゲ天文台(en)のクトゥブッディーン・シーラーズィー(en)が述べた[92]。なお現代では、この種類の中世の報告は太陽黒点を見ていたものとも取り扱われる[93]

インドでは、15世紀にケーララ州の数学・天文学派(en)のニラカンタ・ソマヤジ(en)が、16世紀デンマークティコ・ブラーエに先立ち、太陽の周囲を水星と地球が周回する太陽系モデルを構築した[94]

地上からの観測

水星の日面通過。中心下部にある小さな黒い点が水星である。太陽左の縁に見られる黒い部分は太陽黒点である。

望遠鏡を用いた水星観測は17世紀初めにガリレオ・ガリレイが手がけたが、天体の相(en)を確認するには充分な機能を発揮しなかった。しかし1631年にはピエール・ガッサンディが、ヨハネス・ケプラーが予告した天体の通過を望遠鏡で観測した。1639年にはイタリアジョバンニ・ズッピが望遠鏡を使って水星を観測し、金星や月と同様に満ち欠けがあることを発見した。これによって、水星が太陽の周りを回っていることが確実になった[16]。惑星同士が交差する掩蔽は非常に稀な天体現象だが、1737年5月28日に水星と金星で起こった掩蔽はグリニッジ天文台ジョン・ベヴィスによって観察された[95]。水星と金星が起こす次の掩蔽は2133年12月3日である[96]

水星は太陽に接近しているため、観測するのは非常に困難である。水星軌道周期の約半分に相当する期間は、太陽の光に埋もれてしまって見ることができない。またそれ以外の時期でも、朝か夕方のごく短い時間しか観測できない[97]

地球から見た水星にも、金星や月のような満ち欠けの相が見られる。内合の時に「新水星」、外合の時に「満水星」となるが、これらの時期には太陽と同時に上ったり沈んだりするために、見ることはできない。最大離角の時には半分欠けた形になる。西方最大離角の時には日の出前に最も早く上り、東方最大離角の時には日没後に最も遅く沈む。最大離角の値は、近日点ならば17.9度、遠日点ならば27.8度である[98][99]。しかし金星とは異なり、最も明るくなるのは「半月」形と「満月」形の間の相である(金星では「新月」形と「半月」形の間で最も明るくなる)。この理由は各相にある時の地球からの距離による。水星では内合(「新水星」)と外合(「満水星」)の時の地球からの距離の差は3倍以下だが、金星では6.5倍にもなる。水星が内合になる周期は平均すると116日だが[3]、軌道の離心率が大きいために実際には111日から121日まで変化する。同じ理由で、地球から見て逆行する期間も8日から15日まで変化する。

このような観測の難しさから、水星の理解は他の惑星と比べて遅れた。1800年、ヨハン・シュレーターは水星表面の観察を行い。高さ20kmの山脈が存在すると主張した。フリードリヒ・ヴィルヘルム・ベッセルはシュレーターの観察結果から、自転時間を24時間、自転軸の傾斜が70度だという誤った見積もりを発表した[100]。1880年代になって、ジョヴァンニ・スキアパレッリがより精確な惑星写像を取り、その結果から自転周期は88日であると示唆するとともに、公転も潮汐力から同期した状態にあると考えた[101]。惑星写像への取り組みは引き続き行われ、1934年にはユジェーヌ・ミカエル・アントニアディが観測結果と地図を載せた本を出版した[57]。そこには、数多いアルベド地形(en)(天体面の明暗模様)が反映され、「アントニアディ・マップ」と呼ばれた[102]

1962年6月、ヴラジミル・コテルニコフ(en)率いるソヴィエト連邦科学アカデミー情報通信研究所(Institute of Radio-engineering and Electronics)は、水星にレーダー信号を発信し反射を利用した観測を初めて行った。これはレーダーを利用した惑星観測の皮切りとなった[103][104][105]。3年後に、アメリカのゴードン・ペッティンギル(en)らがプエルトリコアレシボ天文台300m径電波望遠鏡を用いた観測を行い、最終的に水星の自転周期が59日であることを突き止めた[106][107]。水星の自転は公転と同期していると広く考えられていたため、この発見は驚きをもって受け止められた。同期していれば常に影となる半球は非常に冷たくなるはずだが、電波計測の結果は、予想よりもはるかに高い温度を示していた。それでも天文学者の中には風のような熱を分配する何かしら強力な機構を想定するなど、同期説を簡単には手放さない者もいた[108]

公転と自転の比率が1対1ではないと提言したのはイタリアの天文学者ジュゼッペ・コロンボ(en)であり、彼は公転が自転周期の2/3に相当すると述べた[109]。この証明は、マリナー10号から得られたデータで裏づけされた[110]。これは、スキアパレッリとアントニアディの地図が正しいことを示すとともに、他の天文学者が観察した水星表面は2パターンある公転・自転関係のひとつだけを見ていたわけではなく、観測手段が未発達だったために彼らが目にした太陽方向に向けられた表面の違いをさしあたり無視していたことを示した[100]

アレシボ天文台が観測した極のクレーター。水の氷が存在する可能性がある。[111]

地上からの観測は光を反射しない部分を知る手段に乏しく、水星の基本的な特性は探査機を打ち上げて初めて理解できた。しかしながら、近年は技術的進歩が進み、地上観測からでも多くの情報を入手できるようになった。2000年、ウィルソン山天文台の1.5mヘール望遠鏡で高解像度のラッキーイメージング(en)観測が行われ、マリナー10号では得られなかった水星表面部分の画像撮影に成功した[112]。後の解析で、そこにはカロリス盆地を越え、スキナカス盆地(en)の2倍に相当する大きさの巨大な二重クレーターが発見された[113]。その後もアレシボ天文台による観測で、水星表面の大部分は5kmの解像度で撮影された。この中には、極にあり影に水の氷が存在する可能性を持つクレーターも含まれていた[114]

水星への到達

地球から水星に到達するためには高い技術的ハードルがある。水星の軌道は地球に比べて3倍も太陽に近いため、地球から打ち上げた宇宙機を水星重力に捕らえさせるためには、太陽の重力井戸を 9,100万 km 以上も下らなくてはならない。また、軌道速度は地球約 30 km/sに対し水星は48 km/sであり、そのために宇宙機が水星のホーマン遷移軌道に入るために変更しなければならない速度差ΔVは他の惑星探査よりも多くなってしまう問題がある.[115]

水星探査では、太陽の重力井戸を下る運動をするために位置エネルギーが運動エネルギーとなって宇宙機の速度が増す。しかし、水星の周回軌道に入ることや着陸を行おうとすると、急速に速度を落とさなければならず、そのために宇宙機のエンジンを使う必要が生じる。水星は大気が薄いため空力ブレーキの効果は期待できない。計算では、水星探査に使われるエネルギーは太陽系外へ向かうよりも多くなる。これらが、水星探査機の実現回数が少ない理由である[116]

水星探査機マリナー10号
探査機メッセンジャー

水星探査

水星に向けられた初の探査機は、1973年に打ち上げたアメリカ航空宇宙局 (NASA) のマリナー10号であった[83]。同機は1974年に3度にわたって水星に接近。写真撮影や表面温度の観測を行い、惑星表面の特徴的な地形を数多く知らしめた[115][117]。しかし探査可能時間が短く、惑星の夜の部分は撮影ができず、情報は全球の45%以下に止まった[118]

2004年8月3日、アメリカ航空宇宙局のメッセンジャー が打ち上げられ、地球、金星をスイングバイ(フライバイ)しながら水星へ向かって航行し[119]、2008年1月には水星での最初のスイングバイを行った[120]。今後、2011年3月には水星の周回軌道に入り、継続的な観測活動を開始する予定になっている。

計画中

ベピ・コロンボ宇宙航空研究開発機構欧州宇宙機関が共同で打ち上げを計画しえいる探査機である[121]。2014年に打ち上げが予定され、2019年に水星の周回軌道に入り、観測をする計画である[122]。これは2機編成であり[27]、楕円軌道には磁気計測機を、惑星周回軌道には地形探査装置を搭載した化学燃料ロケットを投入し、水星公転の数年に相当する期間をかけて探査を行う予定である[121]。この地形探査装置は、メッセンジャーと同じく分光計を積載し、赤外線、紫外線、X線など複数の波長で惑星の調査を行う[123]

その他

惑星記号

ヘルメスの杖・ケリュケイオンローマ神話ではカドゥケウス、二匹の蛇の絡んだ杖)を図案化したものが、占星術天文学を通して用いられる。ヘルメスは水銀とも関連付けられたため、錬金術では水銀の元素記号として使われた。ケリュケイオンは、商業交通のシンボルでもあり、一橋大学やいくつかの商業校の校章などに現在も用いられている。

占星術

水星は七曜九曜の1つで、10大天体の1つである。西洋占星術では、双児宮処女宮支配星で、吉星である。流動性を示し、通信・交通、商売旅行兄弟に当てはまる[124]

関連項目

参考文献

  • 宮本英昭、平田成、杉田精司、橘省吾『惑星地質学』東京大学出版会、2008、p.63-72頁。ISBN 978-4-13-062713-9 
  • 松井孝典『惑星科学入門』(第一刷)講談社、1996。ISBN 4-06-159222-X 
  • 編集長:水谷仁『ニュートン別冊 太陽と惑星 改訂版』ニュートンプレス、2009。ISBN 978-4-315-51859-7 

脚注

注釈

  1. ^ 以前最小の惑星だった冥王星は2006年に準惑星へ定義されなおした。
  2. ^ 楔形文字の翻訳には、「MUL」を伴った資料もある。ただしMULはシュメールにおいて「星」を意味し、固有名詞の一部とは考えられない。「4」は、シュメール語とアッカド語の翻訳法において、楔形文字の単語が持つ複数の音節のうちいずれかを指定するためにつけられた参照番号と考えられる。

脚注

  1. ^ 天文年鑑2008年版より
  2. ^ a b c d e f g h i j Solar System Exploration” (英語). NASA. 2011年3月11日閲覧。
  3. ^ a b c d e f g h Dr. David R. Williams. “Mercury Fact Sheet” (英語). NASA. 2011年3月11日閲覧。
  4. ^ Anthony Mallama, Dennis Wang, Russell A. Howard. “Photometry of Mercury from SOHO/LASCO and Earth” (英語). Science Direct. 2011年3月11日閲覧。
  5. ^ a b Background Science” (英語). BepiColombo. European Space Agency (2010年8月6日). 2011年3月19日閲覧。
  6. ^ a b 第7回 水星の超真空大気の生成”. JAXA. 2011年3月19日閲覧。
  7. ^ a b c d e f g h i j k l m n o p q 宮本ら (2008)、1.水星、pp.63-66、1-1水星の運動と内部構造
  8. ^ 松井『惑星』、第二章 そそり立つ絶壁の壁、pp.30-33、軌道について
  9. ^ Espenak, Fred (2005年4月21日). “Transits of Mercury” (英語). NASA/Goddard Space Flight Center. 2011年3月19日閲覧。
  10. ^ U. Le Verrier (1859), (in French), "Lettre de M. Le Verrier à M. Faye sur la théorie de Mercure et sur le mouvement du périhélie de cette planète", Comptes rendus hebdomadaires des séances de l'Académie des sciences (Paris), vol. 49 (1859), pp.379-383. (At p.383 in the same volume Le Verrier's report is followed by another, from Faye, enthusiastically recommending to astronomers to search for a previously undetected intra-mercurial object.)
  11. ^ Gilvarry, J. J. (1953). “Relativity Precession of the Asteroid Icarus” (英語) (subscription required). Physical Review 89 (5): 1046. doi:10.1103/PhysRev.89.1046. http://prola.aps.org/abstract/PR/v89/i5/p1046_1 2011年3月19日閲覧。. 
  12. ^ Anonymous. “6.2 Anomalous Precession” (英語). Reflections on Relativity. MathPages. 2011年3月19日閲覧。
  13. ^ a b 松井『惑星』、第二章 そそり立つ絶壁の壁、pp.37-40、公転と自転の奇妙な組み合わせ
  14. ^ a b c d Benz, W.; Slattery, W. L.; Cameron, A. G. W. (1988). “Collisional stripping of Mercury’s mantle” (英語). Icarus 74 (3): 516–528. doi:10.1016/0019-1035(88)90118-2. 
  15. ^ Liu, Han-Shou; O'Keefe, John A. (1965). “Theory of Rotation for the Planet Mercury”. Science 150 (3704): 1717. doi:10.1126/science.150.3704.1717. PMID 17768871. 
  16. ^ a b c d Strom, Robert G.; Sprague, Ann L. (2003). Exploring Mercury: the iron planet. Springer. ISBN 1-85233-731-1 
  17. ^ a b Margot, L.J.; Peale, S. J.; Jurgens, R. F.; Slade, M. A.; Holin, I. V. (2007). “Large Longitude Libration of Mercury Reveals a Molten Core”. Science 316 (5825): 710–714. doi:10.1126/science.1140514. PMID 17478713. http://adsabs.harvard.edu/abs/2007Sci...316..710M. 
  18. ^ a b c 松井『惑星』、第二章 そそり立つ絶壁の壁、pp.35-36、鉄・ニッケルから成る星
  19. ^ staff (2003年5月8日). “Mercury” (英語). U.S. Geological Survey. 2011年3月19日閲覧。
  20. ^ Lyttleton, R. A. (1969). “On the Internal Structures of Mercury and Venus” (英語). Astrophysics and Space Science 5 (1): 18. doi:10.1007/BF00653933. 
  21. ^ Gold, Lauren (2007年5月3日). “Mercury has molten core, Cornell researcher shows” (英語). Chronicle Online (Cornell University). http://www.news.cornell.edu/stories/May07/margot.mercury.html 2011年3月19日閲覧。 
  22. ^ a b Finley, Dave (2007年5月3日). “Mercury's Core Molten, Radar Study Shows” (英語). National Radio Astronomy Observatory. http://www.nrao.edu/pr/2007/mercury/ 2011年3月19日閲覧。 
  23. ^ Spohn, Tilman; Sohl, Frank; Wieczerkowski, Karin; Conzelmann, Vera (2001). “The interior structure of Mercury: what we know, what we expect from BepiColombo”. Planetary and Space Science 49 (14–15): 1561–1570. Bibcode2001P&SS...49.1561S. doi:10.1016/S0032-0633(01)00093-9. 
  24. ^ Gallant, R. 1986. The National Geographic Picture Atlas of Our Universe. National Geographic Society, 2nd edition.
  25. ^ Anderson, J. D.; et al. (July 10, 1996). “Shape and Orientation of Mercury from Radar Ranging Data”. Icarus (Academic press) 124: 690–697. doi:10.1006/icar.1996.0242. 
  26. ^ 松井『惑星』、第二章 そそり立つ絶壁の壁、pp.36-37、水素の起源
  27. ^ a b c d e 宮本ら (2008)、1.水星、pp.71-72、1-3起源を探る探査
  28. ^ a b c d e ニュートン (別2009)、pp.58-59、水星の巨大な核はどうやってできた?
  29. ^ Cameron, A. G. W. (1985). “The partial volatilization of Mercury”. Icarus 64 (2): 285–294. doi:10.1016/0019-1035(85)90091-0. 
  30. ^ Weidenschilling, S. J. (1987). “Iron/silicate fractionation and the origin of Mercury” (英語). Icarus 35 (1): 99–111. doi:10.1016/0019-1035(78)90064-7. 
  31. ^ Schenk, P.; Melosh, H. J.; (03/1994). “Lobate Thrust Scarps and the Thickness of Mercury’s Lithosphere” (英語). Abstracts of the 25th Lunar and Planetary Science Conference 1994: 1994LPI....25.1203S. http://adsabs.harvard.edu/abs/1994LPI....25.1203S 2011年3月19日閲覧。. 
  32. ^ Grayzeck, Ed. “MESSENGER Web Site” (英語). Johns Hopkins University. 2011年3月19日閲覧。
  33. ^ BepiColombo” (英語). ESA Science & Technology. European Space Agency. 2011年3月19日閲覧。
  34. ^ Blue, Jennifer (2008年4月11日). “Gazetteer of Planetary Nomenclature” (英語). US Geological Survey. 2011年3月19日閲覧。
  35. ^ a b Dunne, J. A. and Burgess, E. (1978). “Chapter Seven” (英語). The Voyage of Mariner 10 — Mission to Venus and Mercury. NASA History Office. http://history.nasa.gov/SP-424/ch7.htm 2011年3月19日閲覧。 
  36. ^ a b c d e f g 宮本ら (2008)、1.水星、pp.66-71、1-2水星の表面
  37. ^ Spudis, P. D. (2001). “The Geological History of Mercury” (英語). Workshop on Mercury: Space Environment, Surface, and Interior, Chicago: 100. http://adsabs.harvard.edu/abs/2001mses.conf..100S 2011年3月19日閲覧。. 
  38. ^ 玉手将人. “太陽系惑星の特徴と地球との比較”. 帝京科学大学天文部. 2011年3月11日閲覧。
  39. ^ Strom, Robert (September 1979). “Mercury: a post-Mariner assessment”. Space Science Reviews 24: 3–70. 
  40. ^ Broadfoot, A. L.; S. Kumar, M. J. S. Belton, and M. B. McElroy (July 12, 1974). “Mercury's Atmosphere from Mariner 10: Preliminary Results”. Science 185 (4146): 166–169. doi:10.1126/science.185.4146.166. PMID 17810510. 
  41. ^ Staff (2003年8月5日). “Mercury” (英語). U.S. Geological Survey. 2011年3月19日閲覧。
  42. ^ Head, James W.; Solomon, Sean C. (1981). “Tectonic Evolution of the Terrestrial Planets” (英語). Science 213 (4503): 62–76. doi:10.1126/science.213.4503.62. PMID 17741171. http://www.sciencemag.org/cgi/content/abstract/213/4503/62 2011年3月19日閲覧。. 
  43. ^ a b c 渡部潤一井田茂佐々木晶『太陽系と惑星』日本評論社〈シリーズ現代の天文学〉、2008年、p.38-頁。ISBN 978-4-535-60729-3 
  44. ^ a b c ニュートン (別2009)、pp.56-57、太陽から一番近い惑星
  45. ^ Dzurisin, D. (October 10, 1978). “The tectonic and volcanic history of Mercury as inferred from studies of scarps, ridges, troughs, and other lineaments” (英語). Journal of Geophysical Research 83: 4883–4906. doi:10.1029/JB083iB10p04883. http://adsabs.harvard.edu/abs/1978JGR....83.4883D 2011年3月19日閲覧。. 
  46. ^ a b Van Hoolst, Tim; Jacobs, Carla (2003). “Mercury’s tides and interior structure” (英語). Journal of Geophysical Research 108 (E11): 7. doi:10.1029/2003JE002126. 
  47. ^ Domingue, Deborah L. et al. (August 2009). “Mercury's Atmosphere: A Surface-Bounded Exosphere”. Space Science Reviews 131 (1–4): 161–186. doi:10.1007/s11214-007-9260-9. http://adsabs.harvard.edu/abs/2007SSRv..131..161D. 
  48. ^ 鍵谷将人、田口真、山崎敦、村上豪、吉川一朗、菊池雅行、岡野章一. “かぐや搭載UPI-TVISによる月ナトリウム大気の観測” (PDF). 日本地球惑星科学連合. 2011年3月11日閲覧。
  49. ^ a b 松井『惑星』、第二章 そそり立つ絶壁の壁、pp.33-34、灼熱と極寒の同居する世界
  50. ^ 水星大気の時間変動を地上から観測【2006年11月15日 アストロアーツ】
  51. ^ Hunten, D. M.; Shemansky, D. E.; Morgan, T. H. (1988). “The Mercury atmosphere” (英語). Mercury. University of Arizona Press. ISBN 0-8165-1085-7. http://www.uapress.arizona.edu/onlinebks/Mercury/MercuryCh17.pdf 2011年3月19日閲覧。 
  52. ^ Lakdawalla, Emily (2008年7月3日). “MESSENGER Scientists 'Astonished' to Find Water in Mercury's Thin Atmosphere” (英語). http://www.planetary.org/news/2008/0703_MESSENGER_Scientists_Astonished_to.html 2011年3月19日閲覧。 
  53. ^ Zurbuchen, Thomas H. et al. (July 2008). “MESSENGER Observations of the Composition of Mercury’s Ionized Exosphere and Plasma Environment”. Science 321 (5885): 90–92. doi:10.1126/science.1159314. PMID 18599777. 
  54. ^ “Instrument Shows What Planet Mercury Is Made Of” (英語). University of Michigan. (2008年6月30日). http://newswise.com/articles/view/542209/ 2011年3月19日閲覧。 
  55. ^ Killen, Rosemary; Cremonese, Gabrielle; Lammer, Helmut et al. (2007). “Processes that Promote and Deplete the Exosphere of Mercury”. Space Science Reviews 132: 433–509. doi:10.1007/s11214-007-9232-0. http://adsabs.harvard.edu/abs/2007SSRv..132..433K. 
  56. ^ McClintock, William E.; Vervack Jr., Ronald J.; Bradley, E. Todd et al. (2009). “MESSENGER Observations of Mercury’s Exosphere: Detection of Magnesium and Distribution of Constituents”. Science 324 (5927): 610–613. doi:10.1126/science.1172525. PMID 19407195. http://adsabs.harvard.edu/abs/2009Sci...324..610M. 
  57. ^ a b c d e Beatty, J. Kelly; Petersen, Carolyn Collins; Chaikin, Andrew (1999). The New Solar System. Cambridge University Press. ISBN 0-521-64587-5 
  58. ^ Prockter, Louise (2005) (英語) (PDF). Ice in the Solar System. Volume 26. Johns Hopkins APL Technical Digest. http://www.jhuapl.edu/techdigest/td2602/Prockter.pdf 2011年3月19日閲覧。 
  59. ^ Lewis, John S. (2004). Physics and Chemistry of the Solar System (2nd ed.). Academic Press. p. 463. ISBN 0-12-446744-X 
  60. ^ Murdock, T. L.; Ney, E. P. (1970). “Mercury: The Dark-Side Temperature” (英語). Science 170 (3957): 535–537. doi:10.1126/science.170.3957.535. PMID 17799708. http://www.sciencemag.org/cgi/content/abstract/170/3957/535 2011年3月19日閲覧。. 
  61. ^ Lewis, John S. (2004) (英語). Physics and Chemistry of the Solar System. Academic Press. p. 461. ISBN 978-0-12-446744-6. http://books.google.com/?id=ERpMjmR1ErYC&pg=RA1-PA461&lpg=RA1-PA461&dq=solar-constant+mercury+-wikipedia+-wiki+-encyclopedia 2011年3月19日閲覧。 
  62. ^ Ingersoll, Andrew P.; Svitek, Tomas; Murray, Bruce C. (November 1992). “Stability of polar frosts in spherical bowl-shaped craters on the moon, Mercury, and Mars”. Icarus 100 (1): 40–47. Bibcode1992Icar..100...40I. doi:10.1016/0019-1035(92)90016-Z. 
  63. ^ 吉田二美. “第2回 現在の太陽系の姿” (PDF). 自然科学研究機構国立天文台. 2011年3月11日閲覧。
  64. ^ Slade, M. A.; Butler, B. J.; Muhleman, D. O. (1992). “Mercury radar imaging — Evidence for polar ice” (英語). Science 258 (5082): 635–640. doi:10.1126/science.258.5082.635. PMID 17748898. 
  65. ^ Williams, David R. (2005年6月2日). “Ice on Mercury” (英語). NASA Goddard Space Flight Center. 2011年3月19日閲覧。
  66. ^ a b c Rawlins, K; Moses, J. I.; Zahnle, K.J. (1995). “Exogenic Sources of Water for Mercury's Polar Ice”. Bulletin of the American Astronomical Society 27: 1117. Bibcode1995DPS....27.2112R. 
  67. ^ Harmon, J. K.; Perillat, P. J.; Slade, M. A. (January 2001). “High-Resolution Radar Imaging of Mercury's North Pole”. Icarus 149 (1): 1–15. doi:10.1006/icar.2000.6544. 
  68. ^ Russell, C. T.; Luhmann, J. G. (1997年). “Mercury: Magnetic Field and Magnetosphere” (英語). Space Physics Center, UCLA Institute of Geophysics and Planetary Physics. 2011年3月19日閲覧。
  69. ^ Seeds, Michael A. (2004). Astronomy: The Solar System and Beyond (4th ed.). Brooks Cole. ISBN 0-534-42111-3 
  70. ^ Williams, David R. (2005年1月6日). “Planetary Fact Sheets” (英語). NASA National Space Science Data Center. 2011年3月19日閲覧。
  71. ^ a b c Staff (2008年1月30日). “Mercury’s Internal Magnetic Field” (英語). NASA. 2011年3月19日閲覧。
  72. ^ Gold, Lauren (2007年5月3日). “Mercury has molten core, Cornell researcher shows” (英語). Cornell University. 2011年3月19日閲覧。
  73. ^ Christensen, Ulrich R. (2006). “A deep dynamo generating Mercury's magnetic field”. Nature 444 (7122): 1056–1058. doi:10.1038/nature05342. PMID 17183319. 
  74. ^ Spohn, T.; Sohl, F.; Wieczerkowski, K.; Conzelmann, V. (2001). “The interior structure of Mercury: what we know, what we expect from BepiColombo”. Planetary and Space Science 49 (14–15): 1561–1570. doi:10.1016/S0032-0633(01)00093-9. 
  75. ^ a b Steigerwald, Bill (2009年6月2日). “Magnetic Tornadoes Could Liberate Mercury's Tenuous Atmosphere” (英語). NASA Goddard Space Flight Center. 2011年3月19日閲覧。
  76. ^ USGS Astrogeology: Rotation and pole position for the Sun and planets (IAU WGCCRE)” (英語). 2011年3月19日閲覧。
  77. ^ こよみ用語解説 惑星の自転軸”. 国立天文台. 2011年3月11日閲覧。
  78. ^ Schaefer, Bradley E. (May 2007). “The Latitude and Epoch for the Origin of the Astronomical Lore in Mul.Apin”. American Astronomical Society Meeting 210, #42.05 (American Astronomical Society) 38: 157. http://cdsads.u-strasbg.fr/abs/2007AAS...210.4205S. 
  79. ^ Hunger, Hermann; Pingree, David (1989). “MUL.APIN: An Astronomical Compendium in Cuneiform”. Archiv für Orientforschung (Austria: Verlag Ferdinand Berger & Sohne Gesellschaft MBH) 24: 146. 
  80. ^ Staff (2008年). “MESSENGER: Mercury and Ancient Cultures” (英語). NASA JPL. 2011年3月19日閲覧。
  81. ^ H.G. Liddell and R. Scott; rev. H.S. Jones and R. McKenzie (1996). Greek–English Lexicon, with a Revised Supplement (9th ed.). Oxford: Clarendon Press. pp. 690 and 1646. ISBN 0-19-864226-1 
  82. ^ 山内輝子、山内靖喜. “グローバルテクトニクスの新概念 科学における政治的正当性 Part1” (PDF). NCGT. 2011年3月13日閲覧。
  83. ^ a b Dunne, J. A. and Burgess, E. (1978). “Chapter One”. The Voyage of Mariner 10 — Mission to Venus and Mercury. NASA History Office. http://history.nasa.gov/SP-424/ch1.htm 
  84. ^ Duncan, John Charles (1946). Astronomy: A Textbook. Harper & Brothers. pp. 125. "The symbol for Mercury represents the Caduceus, a wand with two serpents twined around it, which was carried by the messenger of the gods." 
  85. ^ Antoniadi, Eugène Michel; Translated from French by Moore, Patrick (1974). The Planet Mercury. Shaldon, Devon: Keith Reid Ltd. pp. 9–11. ISBN 0-904094-02-2 
  86. ^ Kelley, David H.; Milone, E. F.; Aveni, Anthony F. (2004). Exploring Ancient Skies: An Encyclopedic Survey of Archaeoastronomy. Birkhäuser. ISBN 0-387-95310-8 
  87. ^ Pujari, R.M.; Kolhe, Pradeep; Kumar, N. R. (2006). Pride of India: A Glimpse Into India's Scientific Heritage. Samskrita Bharati. ISBN 81-87276-27-4 
  88. ^ Bakich, Michael E. (2000). The Cambridge Planetary Handbook. Cambridge University Press. ISBN 0-521-63280-3 
  89. ^ Milbrath, Susan (1999). Star Gods of the Maya: Astronomy in Art, Folklore and Calendars. University of Texas Press. ISBN 0-292-75226-1 
  90. ^ Samsó, Julio; Mielgo, Honorino (1994). “Ibn al-Zarqālluh on Mercury”. Journal for the History of Astronomy 25: 289–96 [292]. http://articles.adsabs.harvard.edu/full/1994JHA....25..289S. 
  91. ^ Hartner, Willy (1955). “The Mercury Horoscope of Marcantonio Michiel of Venice”. Vistas in Astronomy 1: 118-122. 
  92. ^ Ansari, S. M. Razaullah (2002). History of oriental astronomy: proceedings of the joint discussion-17 at the 23rd General Assembly of the International Astronomical Union, organised by the Commission 41 (History of Astronomy), held in Kyoto, August 25–26, 1997. Springer. p. 137. ISBN 1402006578
  93. ^ Goldstein, Bernard R. (December 1969). “Some Medieval Reports of Venus and Mercury Transits”. Centaurus 14 (1): 49–59. Bibcode1969Cent...14...49G. doi:10.1111/j.1600-0498.1969.tb00135.x. 
  94. ^ Ramasubramanian, K.; Srinivas, M. S.; Sriram, M. S. (1994). “Modification of the Earlier Indian Planetary Theory by the Kerala Astronomers (c. 1500 AD) and the Implied Heliocentric Picture of Planetary Motion” (英語). Current Science 66: 784–790. http://www.physics.iitm.ac.in/~labs/amp/kerala-astronomy.pdf 2011年3月19日閲覧。. 
  95. ^ Sinnott, RW; Meeus, J (1986). “John Bevis and a Rare Occultation” (英語). Sky and Telescope 72: 220. http://adsabs.harvard.edu/abs/1986S&T....72..220S 2011年3月19日閲覧。. 
  96. ^ Ferris, Timothy (2003). Seeing in the Dark: How Amateur Astronomers. Simon and Schuster. ISBN 0-684-86580-7 
  97. ^ Baumgardner, Jeffrey; Mendillo, Michael; Wilson, Jody K. (2000). “A Digital High-Definition Imaging System for Spectral Studies of Extended Planetary Atmospheres. I. Initial Results in White Light Showing Features on the Hemisphere of Mercury Unimaged by Mariner 10”. The Astronomical Journal 119: 2458–2464. doi:10.1086/301323. 
  98. ^ John Walker. “Mercury Chaser's Calculator” (英語). Fourmilab Switzerland. 2011年3月19日閲覧。 (look at 1964 and 2013)
  99. ^ Mercury Elongation and Distance” (英語). 2011年3月19日閲覧。 —Numbers generated using the Solar System Dynamics Group, Horizons On-Line Ephemeris System
  100. ^ a b Colombo, G.; Shapiro, I. I. (11/1965). “The Rotation of the Planet Mercury” (英語). SAO Special Report #188R 188. http://adsabs.harvard.edu/abs/1965SAOSR.188.....C 2011年3月19日閲覧。. 
  101. ^ Holden, E. S. (1890). “Announcement of the Discovery of the Rotation Period of Mercury [by Professor Schiaparelli”] (英語). Publications of the Astronomical Society of the Pacific 2 (7): 79. doi:10.1086/120099. http://adsabs.harvard.edu/abs/1890PASP....2...79H 2011年3月19日閲覧。. 
  102. ^ Merton E. Davies, et al. (1978). “Surface Mapping” (英語). Atlas of Mercury. NASA Office of Space Sciences. http://history.nasa.gov/SP-423/surface.htm 2011年3月19日閲覧。 
  103. ^ Evans, J. V.; Brockelman, R. A.; Henry, J. C.; Hyde, G. M.; Kraft, L. G.; Reid, W. A.; Smith, W. W. (1965). “Radio Echo Observations of Venus and Mercury at 23 cm Wavelength” (英語). Astronomical Journal 70: 487–500. doi:10.1086/109772. http://articles.adsabs.harvard.edu/abs/1965AJ.....70..486E/0000487.000.html 2011年3月19日閲覧。. 
  104. ^ Moore, Patrick (2000). The Data Book of Astronomy. New York: CRC Press. p. 483. ISBN 0-7503-0620-3. http://books.google.com/books?lr=&as_brr=3&q=kotelnikov+1962+mercury&btnG=Search+Books 
  105. ^ Butrica, Andrew J. (1996). “Chapter 5”. To See the Unseen: A History of Planetary Radar Astronomy. NASA History Office, Washington D.C.. ISBN 0-16-048578-9. http://history.nasa.gov/SP-4218/ch5.htm 
  106. ^ Pettengill, G. H.; Dyce, R. B. (1965). “A Radar Determination of the Rotation of the Planet Mercury”. Nature 206 (1240): 451–2. doi:10.1038/2061240a0. 
  107. ^ Mercury at Eric Weisstein's 'World of Astronomy'
  108. ^ Murray, Bruce C.; Burgess, Eric (1977). Flight to Mercury. Columbia University Press. ISBN 0-231-03996-4 
  109. ^ Colombo, G. (1965). “Rotational Period of the Planet Mercury” (英語). Nature 208: 575. doi:10.1038/208575a0. http://adsabs.harvard.edu/abs/1965Natur.208..575C 2011年3月19日閲覧。. 
  110. ^ Davies, Merton E. et al. (1976年10月). “Mariner 10 Mission and Spacecraft” (英語). SP-423 Atlas of Mercury. NASA JPL. 2011年3月19日閲覧。
  111. ^ NASA. “Introduction to Planetary Radar – Mercury” (英語). Fourmilab Switzerland. 2011年3月19日閲覧。
  112. ^ Dantowitz, R. F.; Teare, S. W.; Kozubal, M. J. (2000). “Ground-based High-Resolution Imaging of Mercury”. Astronomical Journal 119: 2455–2457. doi:10.1016/j.asr.2005.05.071. http://ukads.nottingham.ac.uk/cgi-bin/nph-bib_query?bibcode=2000AJ....119.2455D&db_key=AST. 
  113. ^ L. V. Ksanfomality (2006). “Earth-based optical imaging of Mercury”. Advances in Space Research 38: 594. doi:10.1016/j.asr.2005.05.071. http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2006AdSpR..38..594K&db_key=AST&data_type=HTML&format=&high=461152a03222956. 
  114. ^ Harmon, J. K. et al. (2007). “Mercury: Radar images of the equatorial and midlatitude zones”. Icarus 187: 374. doi:10.1016/j.icarus.2006.09.026. http://adsabs.harvard.edu/abs/2007Icar..187..374H. 
  115. ^ a b Dunne, J. A. and Burgess, E. (1978). “Chapter Four” (英語). The Voyage of Mariner 10 — Mission to Venus and Mercury. NASA History Office. http://history.nasa.gov/SP-424/ch4.htm 2011年3月19日閲覧。 
  116. ^ Leipold, M.; Seboldt, W.; Lingner, S.; Borg, E.; Herrmann, A.; Pabsch, A.; Wagner, O.; Bruckner, J. (July 1996). “Mercury sun-synchronous polar orbiter with a solar sail”. Acta Astronautica 39 (1): 143–151. doi:10.1016/S0094-5765(96)00131-2. 
  117. ^ Phillips, Tony (1976年10月). “NASA 2006 Transit of Mercury” (英語). SP-423 Atlas of Mercury. NASA. 2011年3月19日閲覧。
  118. ^ Tariq Malik (2004年8月16日). “MESSENGER to test theory of shrinking Mercury” (英語). USA Today. http://www.usatoday.com/tech/news/2004-08-16-mercury-may-shrink_x.htm 2011年3月19日閲覧。 
  119. ^ MESSENGER Engine Burn Puts Spacecraft on Track for Venus” (英語). SpaceRef.com (2005年). 2011年3月19日閲覧。
  120. ^ Countdown to MESSENGER's Closest Approach with Mercury” (英語). Johns Hopkins University Applied Physics Laboratory (2008年1月14日). 2011年3月19日閲覧。
  121. ^ a b ESA gives go-ahead to build BepiColombo” (英語). European Space Agency (2007年2月26日). 2011年3月19日閲覧。
  122. ^ Fleming, Nic (2008年1月18日). “Star Trek-style ion engine to fuel Mercury craft” (英語). The Telegraph. http://www.telegraph.co.uk/earth/main.jhtml?view=DETAILS&grid=&xml=/earth/2008/01/18/scimerc118.xml 2011年3月19日閲覧。 
  123. ^ Objectives” (英語). European Space Agency (2006年2月21日). 2011年3月19日閲覧。
  124. ^ 石川源晃『【実習】占星学入門』 ISBN 4-89203-153-4

脚注2

本脚注は、出典・脚注内で提示されている「出典」を示しています。

外部リンク

Template:Link FA Template:Link FA Template:Link FA Template:Link FA Template:Link FA Template:Link FA Template:Link FA Template:Link FA Template:Link FA Template:Link FA Template:Link FA

Template:Link FA Template:Link GA