RNAポリメラーゼ

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索

RNAポリメラーゼ (RNA polymerase) とは、リボヌクレオチドを重合させてRNAを合成する酵素。DNAの鋳型鎖(一本鎖)の塩基配列を読み取って相補的なRNAを合成する反応(転写)を触媒する中心となる酵素をDNA依存性ポリメラーゼ(単にRNAポリメラーゼと呼ぶ)という。「ポリメラーゼ」は、より英語発音に近い「ポリメレース」と呼ばれることも多い。

真核生物では、DNAを鋳型にしてmRNAsnRNA遺伝子の多くを転写するRNAポリメラーゼIIがよく知られる。このほかに35S rRNA前駆体を転写するRNAポリメラーゼI、tRNAとU6 snRNA、5S rRNA前駆体等を転写するRNA ポリメラーゼIIIなどがあり、上記三種は DNA依存性RNAポリメラーゼと呼ばれる。また、RNAを鋳型にRNA を合成するRNA依存性RNA ポリメラーゼもあり、多くのRNAウイルスで重要な機能を果たす以外に、microRNAの増幅過程にも利用される。

鋳型を必要としない物もあり、初めて発見されたRNA ポリメラーゼであるポリヌクレオチドホスホリラーゼ(ポリヌクレオチドフォスフォリレース、ポリニュークリオタイドフォスフォリレース)もそのひとつとしてあげられる。この酵素は実際には細菌細胞内でヌクレアーゼとして働くが、試験管内ではRNA を合成することができる。これを利用して一種類のヌクレオチドからなるRNAを合成し、それから翻訳されるタンパク質を調べることで初めて遺伝暗号の決定が行われた。真核生物のもつpoly(A)ポリメラーゼも同様に鋳型を必要とせず、Pol II転写産物の3'末端にpoly(A)鎖を付加することで転写後の遺伝子発現制御機構の一端を担っている。

真核生物の転写装置(RNAポリメラーゼ)は、Pol I、Pol II、Pol IIIの3種がある。それぞれ10種類以上ものサブユニットから構成される(基本的には12種)。また、古細菌のRNAポリメラーゼもサブユニット数が多く、9-14種のサブユニットから構成されている。ユリアーキオータではいくつかのサブユニットが省かれているが、一部のクレンアーキオータには真核生物の12種類のサブユニットが全て保存されており、真核生物の持つ3種のRNAポリメラーゼの祖先型と考えられている。古細菌のRNAポリメラーゼは、Aサブユニットが2つに分かれている特徴がある。

一方で、真正細菌のRNAポリメラーゼは全体的に真核生物や古細菌のものより単純な構成である。ααββ'ωの4種5サブユニットからなるコアエンザイムに、σが会合したホロエンザイムと呼ばれる形態で正常なプロモーターを認識する。シグマ因子は遺伝子上流のプロモーター配列を認識して転写を開始する役割を担っている。

真正細菌のRNAポリメラーゼサブユニット[編集]

大腸菌のRNAポリメラーゼホロ酵素RNA polymerase holoenzyme は2分子のα (α1,2)および1分子ずつのββ’σω サブユニットを含む[1]。σサブユニット以外だけでも複合し、これをRNAポリメラーゼコア酵素 RNA polymerase core enzyme (コアポリメラーゼ core polymerase )と呼ぶ。コア酵素は実際にRNAを合成する部位で、σサブユニット(σ因子)はコア酵素を特定の遺伝子に導く。ホロ酵素の特異性 specificity (σはギリシャ文字のs)を担うといえる[2]

それぞれの項で各サブユニットを紹介する。

αサブユニット[編集]

RNAポリメラーゼホロ酵素において2つ存在するαサブユニットは、開始段階ではプロモーターのUPエレメントの認識を担う。一方、伸長段階になるとコア酵素の会合を含む様々な活性を示す。

リチャード・グルース Richard Grouse らはα235(C末端の94アミノ酸欠損。正常なアミノ酸数は329で94失い235)およびR265C(N末端から265番目のアルギニンシステイン置換)という2つのαサブユニット変異体について実験。これにより、RNAポリメラーゼホロ酵素がUPエレメントを認識しなかったことを明らかにした[3]。また、グルースとリチャード・エブライト Richard Ebright らはタンパク質限定分解法を用いて、αサブユニットのN末端およびC末端がそれぞれ独立してα-NTD amino terminal domain of the α subunit およびα-CTD carboxyl terminal domain of the α subunit というドメインを形成することを突き止めた[4]。実験生物は大腸菌。N末端ドメインは8〜241付近を含む28kD、C末端ドメインは249〜329(末端)付近を含む8kDである。グルースとエブライトらはまた、2つは明確な構造(モチーフ)をとらない、少なくとも239〜251の13アミノ酸による連結鎖でつながっていることも発見した[5]

このことから、α-CTDの機能について一つの仮説が考えられる。RNAコア酵素においてほかのタンパク質と相互作用するのはα-NTDであり、αCTDは連結鎖の先でコア酵素から離れている。しかし、UPエレメントに対して強力に結合し、DNAとホロ酵素とのつながりをさらに強固に補う[5][6]。後述するRF複合体の立体構造解析から、2つあるUPエレメントのうち-40付近のものはα1が、-60付近のものはα2が連結する。

βサブユニット[編集]

β'サブユニットとともに転写産物の伸長を担う。どちらもDNAとの結合部位を持つが、βサブユニットのそれはN末端[注釈 1]近くのMet30〜Met102の領域だ[7]静電相互作用で弱く結合する。エフゲニー・ナドラー Evgeny Nudler の1996年の実験によると、DNAの-6〜+1が対象で、転写中この部位は融解している[8]。DNAとの接続で中心になるのは別のβ'サブユニットの結合部位であるが、βサブユニットのそれはその上流に位置する。このため、上流へと吐き出される転写産物が鋳型鎖との結合を脅かしたとしても、RNAポリメラーゼの活性に大して影響はない。また、ナドラーの別の実験によると、βサブユニットはβ’の結合にも関わるようだ[7]

ホロ酵素の活性部位を構成するタンパク質の一つであり、補因子であるMg+と結合する3つのアスパラギン酸を持つ。

βサブユニットは微生物に対する代表的な抗生物質であるリファンピシンストレプトリジギンが直接作用する物質である[9]。したがってこの2つは転写の伸長を阻害する。ただし、ストレプトリジギンは開始段階に効果があるとされている。これは、開始段階にも10ntのRNA(アボーティブ転写産物)を合成する過程[注釈 2]があり、これを阻害するためである[9]

β'サブユニット[編集]

β'サブユニットは、転写の開始段階においてRNAポリメラーゼホロ酵素が-11〜+1位を巻き戻すことを助ける[9]。この巻き戻しはいわゆる開放型複合体の形成[注釈 3]であるが、その際に非鋳型鎖[注釈 4]の-10領域中にRNAポリメラーゼの結合が必要だ。キャロル・グロス Carol Gross らの研究によると、結合はβ'の262〜309のアミノ酸領域が促す[3]

伸長段階においてはRNAポリメラーゼホロ酵素のDNA結合を担う。すなわち、C末端[注釈 1]近くのMet1230〜Met1273で+2〜+11の領域に強く疎水性相互作用する[8]。このDNA領域はβサブユニットとの結合部位と異なり、転写中は二重らせんのままだ。

σサブユニット[編集]

σ70 領域1.1
識別子
略号 Sigma70_r1_1
Pfam PF03979
InterPro IPR007127
σ70 領域1.2
PDB 1ku2 EBI.jpg
Thermus aquaticus のRNAポリメラーゼにおける、領域1.2から3.1までのσ因子断片の結晶構造
識別子
略号 Sigma70_r1_2
Pfam PF00140
InterPro IPR009042
PROSITE PDOC00592
SCOP 1sig
SUPERFAMILY 1sig
σ70 領域2
PDB 1sig EBI.jpg
Escherichia coli のRNAポリメラーゼにおけるσ70断片の結晶構造
識別子
略号 Sigma70_r2
Pfam PF04542
Pfam clan CL0123
InterPro IPR007627
PROSITE PDOC00592
SCOP 1sig
SUPERFAMILY 1sig
σ70 領域3
識別子
略号 Sigma70_r3
Pfam PF04539
Pfam clan CL0123
InterPro IPR007624
SCOP 1ku2
SUPERFAMILY 1ku2
σ70 領域4
PDB 1tty EBI.jpg
Thermotoga maritima のσ70における領域4の溶液中構造
識別子
略号 Sigma70_r4
Pfam PF04545
Pfam clan CL0123
InterPro IPR007630
SCOP 1or7
SUPERFAMILY 1or7
σ70 領域4.2
PDB 2h27 EBI.jpg
-35ボックスに結合した、Escherichia coli のσ70における領域4
識別子
略号 Sigma70_r4_2
Pfam PF08281
Pfam clan CL0123
InterPro IPR013249
SCOP 1or7
SUPERFAMILY 1or7

特に転写開始段階[注釈 2]で活躍するようだ。σ因子があるとRNAポリメラーゼは不特定のDNA部位(緩い結合部位 loose binding site )に弱く結合。滑って移動し、プロモーターに出会うかそのまま遊離する。これにより、RNAポリメラーゼが転写させる遺伝子を発見することはとても速い。 速度定数にして1010 M-1 s-1で、滑らずにDNAへ無差別に結合しては解離を繰り返す場合の100倍だ[10][11]。結合した時の安定性でいえば、解離までの半減期は約60分と長い[11]。σ因子がなければ1秒以下である[11]。σサブユニットはまたRNAポリメラーゼとプロモーターを、半減期が数時間になるほど強固に結合させる。ホロ酵素とプロモーターの会合定数はほかの配列と比較して平均約107倍であり、コア酵素の平均1000倍にもなる[11]。プロモーターによって結合定数は106〜1012と幅広く、rRNAのような約1秒に一回からlacI 遺伝子のような約30分に1回という転写頻度の違いを生み出す[12]。それだけではなく、伸長段階への移行に必要なDNAの巻き戻しも担う[注釈 3][13]

伸長段階に突入するとき、RNAポリメラーゼは構造を変えるが、このときσ因子の結合は極端に弱くなる。トラバーズ Travers とバージェス Burgess の研究によると、σ因子は伸長を促進することはない[14]。二人の1969年の論文では、離れたσ因子は別のコア酵素と結合し、なおかつそれはDNAを正常に転写できることを証明した[14]。このことから、σ因子は再利用されると考えられる。σサイクルという循環の中では当初、伸長前に必ず離れるものと考えられていたが、現在では結合が弱くなるだけという説が有力だ[15]。実際、伸長段階に至ったホロ酵素の70%はσ因子を保有したままだ[13]。すなわち、σ因子は通常伸長が止まったときに、別のコア酵素に利用されるため離れる。

特別な遺伝子を専任するσ因子もある。あらゆる真正細菌は、成長機能に関する遺伝子(通常の増殖に必要な遺伝子)を転写する主要σ因子 primary σ factor :σAを持つ。例えば、大腸菌ではσ70であり、枯草菌 ではσ43[16]。それぞれ70kDと43kDで、右上の番号は分子量に由来する。ほかにも、熱ショック遺伝子胞子形成遺伝子なども特別なσ因子が担当する[16]。多くの種類があるのは、環境条件によって適切な遺伝子群を発現するためで、この使い分けは特に枯草菌を用いた研究によって明らかとなった。普段はσ43が転写制御に当たっているが、栄養状態が悪くなった場合などには他のσ因子(σHなど)が発現し、胞子形成の準備を始める。その後母細胞ではE、Kと変化し、胞子ではF、Gが使用される。

σ因子の領域[編集]

あらゆる真正細菌におけるσ因子のアミノ酸配列は領域1から4に分類できる。ハーマン Helmann とチェンバーリン Chamberlin は各領域の機能を以下のように提唱した[17]

領域1は主要σ因子にしか存在しない。σ因子がRNAポリメラーゼを伴わずにプロモーターと結合することを阻害する。このため、DNAと結合するためにはRNAポリメラーゼコア酵素と結合して、後述する領域2.4と4.2のドメインを露出させなければならない。σ因子単独の結合はコア酵素とプロモーター間の結合の阻害につながるためこの機能は重要だ。

領域2は全てのσ因子に存在し、あらゆる生物で最も共通性が高い[18]。さらに領域2.1から2.4に分類される。特に重要なのは領域2.4で、これは-10ボックスに特異的に強く結合する。DNAとの結合に最適なαへリックスを形成すると予測されるアミノ酸配列を含んでいるが、実際に-10ボックスを認識することはリチャード・ロジック Richard Losick が代償変異実験で証明した[18]

領域3はコア酵素とDNA両方の結合に関与する。領域3と4をつなげる連結鎖は、ほとんどの転写で最初に合成されるアデニンとの特異的な結合に関わる[19]。また、RNA出口通路を塞ぐ(#真正細菌のホロ酵素-DNA複合体の(3)で詳述)。合成されたばかりのアデニンはDNAとの2本の弱い水素結合でしか支えられておらず、ホロ酵素との特異的な結合が必要だ。連結鎖を欠いたホロ酵素での実験では、最初の2つのリボヌクレオチドの一方、または両方が通常よりはるかに高濃度でなければ転写が始まらないことが確認された[19]

領域4は4.1と4.2に分けられ、ホロ酵素のプロモーター認識において重要と考えられている。領域4.2はヘリックスターンヘリックスというDNA結合ドメインを含み、-35ボックスに強く結合する。

真正細菌の伸長複合体[編集]

伸長段階を実行するDNAポリメラーゼを中心とした複合体の立体構造についての研究は、1999年にセス・ダースト Seth Darst がX線結晶構造解析で撮影したThermus aquaticus の画像に基づく。2008年現在、真正細菌のモデル生物である大腸菌をX線結晶構造解析できたものはいないためだ。とはいえ、二次元結晶電子顕微鏡で観察した大腸菌コアポリメラーゼの全体の形状は酷似しているため、詳細な構造も似ていると考えられている[20]

真正細菌のコア酵素[編集]

T. Aquaticus のRNAポリメラーゼコア酵素はカニはさみのようだ。主に爪の一つはβサブユニット、もう一つはβ'サブユニットが占める。α1と2はヒンジにあり、それぞれβ、β'に結合している。小さなωサブユニットはβ'サブユニットのC末端[注釈 1]に巻きついており、はさみでいうに存在する。触媒活性中心 catalytic center (活性部位)は、βとβ'サブユニットの内部である活性中心溝 channel における付け根にある[21]。広さ約25Åの空間だ[22][23]。ここにはマグネシウムイオン Mg2+がβサブユニット中の3つのアスパラギン酸キレート結合している。この3つはアミノ酸配列NA DFDGD(Dがアスパラギン酸)に含まれており、全ての細菌で保存されている[20]

真正細菌のホロ酵素[編集]

2002年のダーストらのX線結晶構造解析から3つの結論が出された[24]。(1)σ因子(σA)とβおよびβ’サブユニットとの間には広い範囲の相互作用がある。(2)σ因子のN末端[注釈 1]にある91個のアミノ酸( ドメイン1.1)が欠損しているホロ酵素にはDNAを通す割れ目があったが、それにしては小さい。このことから、91個のアミノ酸は割れ目をこじ開けてDNAを結合させると推測されている。(3)σ因子中のドメインのうちの2つ(ドメイン3と4)をつなぐ、明確な三次構造のないループはRNAポリメラーゼホロ酵素の活性部位に近く、また転写産物の出口に存在している。

2番目で欠損している部位を解釈しているのは、ダーストらは完全にホロ酵素を結晶化できず、ドメイン1.1を欠損したσのそれを撮影に用いたからである[25]。よって、完全な構造は明らかでないが、その予測はできる。例えば、画像によると切断されたN末端がαサブユニットの端に位置し、活性部位にまっすぐ向く。また、ドメイン1.1は中性pHで約3分の1の残基負電荷となるほど酸性アミノ酸が非常に多い。塩基性アミノ酸が並ぶ活性部位にいかにも強く結合できそうだ。ダーストらはこれを、ドメイン1.1は小さすぎる入口をこじ開けてDNAを内部に結合させるためと考えた[25]。そして、内部でDNAは融解し、ホロ酵素は閉鎖型複合体[注釈 2]になるのだろう。その際にドメイン1.1は解離し、内部のDNA周辺で活性部位は閉じると考えられる。この解離は、閉鎖型複合体に保護されていたのが、開放型複合体への移行でドメイン1.1がヒドロキシルラジカルにさらされるためのようだ。リチャード・エブライトは閉鎖型複合体のドメイン1.1が開放型複合体では消えていることを蛍光共鳴エネルギー移動実験で証明した[25]

3番目の見解には2つの解釈がある。第一に、σ因子は活性部位に近づくことでリン酸ジエステル結合の形成に携わる。第二に、ループの連結鎖は転写産物の出口を塞ぐことで、アボーティブ転写産物の形成を行う[注釈 2]。アボーティブ転写産物形成については、連結鎖と開始段階で合成されるRNAは出口を占有するための競合をするという仮説がある[26]。連結鎖が勝つとRNAの伸長は中断され、短いアボーティブ転写産物として放出される。アボーティブ転写産物は完成した転写産物より過剰に合成される(大腸菌では11倍過剰[26])ので、この過程はおそらく何度も繰り返す。約12nt以上にうまく成長できたときにRNAはようやく競合に勝つ。連結鎖はRNAにどかされ、結果、コア酵素とσ因子との結合は弱くなる。もしくはコア酵素から解離して伸長への移行に備える。ダーストらは、連結鎖を欠損したσ因子でアボーティブ転写産物は多量に生産されないことを確認した[26]。アボーティブ転写産物はσ因子が活性部位に存在するための副産物なのだろう。伸長の礎となる短いDNAを結合させるためσ因子が活性部位に接近することで、必然的に連結鎖は出口を塞ぐのだ[26]

真正細菌のホロ酵素-DNA複合体[編集]

T. aquaticus のRNAポリメラーゼ伸長複合体。DNAは青、RNAは赤、活性部位にあるマグネシウムイオンは黄色で示す。

ホロ酵素とDNAが成す複合体は、転写時の状態であるためRF複合体( replicative form complex、RFは複製型)と呼ぶ。ダーストらは下図のフォークジャンクションDNAT. aquaticus のDNAポリメラーゼホロ酵素を結合させた、RF複合体を作成した。このDNAは、-35ボックスを含むほとんどが二本鎖だが、-10ボックス中の非鋳型鎖[注釈 4]に-11位から始まる一本鎖の突出部分を持つ。これは開放型複合体における状態を模倣したものだ(詳しくは#真正細菌のβサブユニット)。

RF複合体の立体映像を得て、様々な事実が判明した。ホロ酵素に結合するDNAはσサブユニットがある場所を横切る。大腸菌プロモーターにおいては、-12位の塩基がσ70因子の領域2.4のGln437およびThr440と相互作用している。T. aquaticus のσAで2つのアミノ酸はGln260とAsn263とに相当する。

Trp256は-10ボックス直前の-12位に非常に近い。T. aquaticus σAPhe248、Tyr253、Trp256や大腸菌σ70における一部の3 芳香族アミノ酸は高度に保存されている。これらは開放型複合体の-10ボックスの非鋳型鎖に結合することで、プロモーターの融解に関与すると目される。観察されたTrp256の位置から-11位の塩基対の代わりとなり、融解を促進する可能性が高い。

σの領域2.2と2.3における2つの保存された塩基性アミノ酸(Arg237とLys241)が 静電相互作用で結合していることが観察された。しかし、領域4.2の残基は35ボックスに結合していない。ダーストらは、撮影のためにRF複合体を結晶格子とするときに、-35ボックスが領域4.2に対する正常な位置から押し出されてしまったと結論付けた[27]。 ダーストらは自身の撮影したRF複合体の構造やその他の証拠から以下の仮説を提唱した[27]。DNAの上流で二本鎖DNAが曲がることによって、DNaseⅠの標的部位が生じる。一方、下流領域では二重らせんが融解。こうして閉鎖型から開放型へと複合体が移行する。開放型複合体でのDNAや各タンパク質の相互作用も立体的に解析された。-10ボックスがβとβ‘サブユニットの間で融解するが、これはβ’舵型構造によって維持される。この構造はβ’サブユニットの表面から隣接するβサブユニットに向けて、また分離した2つのDNA鎖の間隙に突き出す。これによって、DNAの再会合は阻止される。

活性部位には2つのMg+が3つのアスパラギン酸によって支えられる。

             非鋳型鎖
  -40        -30        -20       -10
5' GGCCGC|TTGACA|AAAGTGTTAAATTG|TG|C|TATACT 3'
3' CCGGCG|AACTGT|TTTCACAATTTAAC|AC|G|A      5'
        -35ボックス      ↑ -10ボックス
                         拡張した-10ボックス
             鋳型鎖
図:RF複合体の作成に使用したDNA

少なくとも開放型複合体になった時点で、ホロ酵素には内部に通じる5つの通路がある[21]NTP取り込み通路基質であるリボヌクレオチドを触媒活性中心に迎え入れる。RNA出口通路は後の伸長段階で合成したRNA鎖の部分を出すためにある。ほかの3つの通路はDNAが出入りするために使う。下流のDNAは下流DNA用通路から二重らせんのまま活性中心溝に入る。そこでDNAは+3から2本の一本鎖に分かれる[28]。非鋳型鎖は非鋳型鎖用通路(NT通路)を抜けてホロ酵素の表面に沿って進む。一方、鋳型鎖は触媒活性溝を突き進み、鋳型鎖用通路(T通路)から外に出る。2つの一本鎖はホロ酵素の後方にある上流DNAの-11の位置で二重らせんに戻る[28]

真核生物のRNAポリメラーゼ[編集]

α-アマニチン(赤)が結合した真核生物のRNAポリメラーゼⅡ。このはmRNA合成を阻害する。

真核生物にはRNAポリメラーゼⅠ,Ⅱ,Ⅲといった3種類のRNAポリメラーゼがある。1969年にロバート・ローダー Robert Roeder とウィリアム・ラター William Rutter が発見した[29]。3つは合成するRNAが異なり、RNAポリメラーゼⅠはrRNA前駆体を合成する。RNAポリメラーゼⅡは、タンパク質をコードするmRNAのほか、いまだ謎の多いヘテロ核内RNA heterogeneous nuclear RNA:hnRNA や大部分の核内低分子RNA small nuclear RNA:snRNA を合成する。hnRNAとsnRNAは成熟mRNAの合成に関わる。RNAポリメラーゼⅢはtRNAや5S rRNA、前述とは別のいくつかのsnRNAの前駆体を担う。また、細胞内の分布も別で、RNAポリメラーゼⅠは核小体にだけ、ⅡとⅢが核質にだけ存在する。

細菌は開始因子が一つ(σ因子)だけだったが、真核生物では複数の基本転写因子 general transcription factor:GTF を必要とする。しかし、実際にはヌクレオソームがあるためさらにDNA結合調節タンパク、いわゆる介在複合体、ヌクレオソーム修飾酵素をはじめとしたいくつかのタンパク質を必要とする[30]

RNAポリメラーゼⅡのサブユニット[編集]

RNAポリメラーゼⅡのサブユニット構成は、1971年にピエール・シャンボン Pierre Chambon らとラターらのグループから独立に報告された[31]。この時は不完全だったが、1975年にマウス由来の全てのRNAポリメラーゼから、ローダーらがほぼ完全な情報を明らかにした[31]。現在では全三種のサブユニットについて正確に判明している。

ヒト酵母におけるポリメラーゼⅡの12個のサブユニットについて下の表にまとめた。これらは各々単独の遺伝子にコードされている。各サブユニットの名前はその遺伝子の名前に由来する。RPBという名称は、シャンボンが用いたRNAポリメラーゼB(すなわちⅡ)という呼び名にちなむ。

リチャード・ヤング Richard Young はエピトープタグ法で同定した10個のサブユニットを3つに分類した[31]。第一に、真正細菌のRNAポリメラーゼコア酵素に構造・機能ともに類似するコアサブユニット。第二に、少なくとも酵母では3種類の核内RNAポリメラーゼ全てにある共通サブユニット common subunits 。最後に、必ずしも酵素活性にいつも必要ではない非必須サブユニットだ。

電気泳動の結果から、Rpb1サブユニットには215kDのaと240kDと測定されたoの2つの形態が存在する。ⅡaのC末端にはCTD carboxyl-terminal domain と呼ぶ、7個のアミノ酸(heptad )から成る共通配列 Tyr-Ser-Pro-Thr-Ser-Pro-Serが反復した配列がある。ⅡoはCTDのヒドロキシ基を持ったアミノ酸(セリン、スレオニン、チロシン)がリン酸化したものである。しかし、 哺乳類のhaptadは52回反復するが、これが全てリン酸化したとしてもⅡaとⅡoの分子量差を埋めることはできない。実際の分子量が大きく見えるよう、泳動度が遅くなるよう、リン酸化は立体構造の変化を引き起こすと考えられている。異なるRpb1サブユニットを所有するRNAポリメラーゼⅡをそれぞれRNAポリメラーゼⅡA RNA polymerase ⅡA およびRNAポリメラーゼⅡO RNA polymerase ⅡO と区別する。前者はプロモーターに最初に結合するときの形態で、後者は伸長反応を行う。

ヒトと酵母におけるRNAポリメラーゼⅡのサブユニット[32]
サブユニット 酵母遺伝子 酵母タンパク質のモル質量(kD) 特徴
hRPB1 RPb1 192 コアサブユニット。CTDを含み、DNAと結合する。プロモーターの選別に関与。β’と相同。
hRPB2 RPb2 139 活性部位を含むコアサブユニット。プロモーターの認識と伸長速度に関与。β’に相同。
hRPB3 RPb3 35 コアサブユニット。原核生物のαサブユニットと相同で、Rpb11と機能する可能性あり。
hRPB4 RPb4 25 非必須サブユニット。Rpb7と複合体を形成し、ストレス応答に関与する。
hRPB5 RPb5 25 共通サブユニット。転写アクチベーターの標的。
hRPB6 RPb6 18 共通サブユニット。複合体形成と安定化に寄与。
hRPB7 RPb7 19 定常期のRpb4と複合体を形成。
hRPB8 RPb8 17 共通サブユニット。オリゴヌクレオチドオリゴ糖結合ドメイン
hRPB9 RPb9 14 伸長に関与する可能性があるZnリボンモチーフを含む。プロモーターを認識。
hRPB10 RPb10 8 共通サブユニット。
hRPB11 RPb11 14 原核生物のαサブユニットと相同で、Rpb3と機能する可能性あり。
hRPB12 RPb12 8 共通サブユニット。

RNAポリメラーゼⅡの立体構造[編集]

ロジャー・コーンバーグらは2001年に X線構造解析の結果を発表した[33]。RNAポリメラーゼⅡの結晶化は難しく、撮影に用いたのはRpb4とRpb7を欠いた酵母変異株のもの(polⅡ Δ4/7)だった。これは転写を開始できないが、伸長反応は問題なくできる。

全体の構造は巨大なのようで、酸性のDNAをくわえる深い溝がある。このため残りの酵素表面は酸性であるのに対し、溝には塩基性残基が並ぶ。上顎はRpb1とRpb9、下顎はRpb5だ。底の触媒活性中心には2個のMg2+があり、コーンバーグらはメタルA metal A とメタルB metal B に区別した[34]。メタルAはRpb1のD481、D483、D485といった3個のアスパラギン酸と強固に結合している。一方、メタルBはRpb1のD481、Rpb2のE836とD837に囲まれているものの、配位結合するには距離がある。触媒反応の過程でこれら酸性アミノ酸が近づくのだろう。メタルBは基質のリボヌクレオチド三リン酸と結合する。

真正細菌同様、RNAポリメラーゼⅡにもポア1 pore 1 という、合成したRNAを出す出口が存在する。漏斗状のポア1外縁には、出てきたRNAを切断するTFⅡSと結合するアミノ酸が並ぶ[34]。一方、入り口は14Åにも及ぶクランプモジュール clamp module が回転することによって開閉される[35]。プロモーターは酵素表面でほどかれ、相補鎖を外に残して鋳型鎖が溝の中へ誘導される。

RNAポリメラーゼⅡの伸長複合体[編集]

コーンバーグらはDNAと合成したRNA両方と結合したRNAポリメラーゼⅡの撮影にも成功した[35]。単独でクランプモジュールは開いて外から活性中心に近づけたが、伸長複合体のクランプモジュールは閉じ、鋳型鎖と転写産物を覆う[36]。後述するように、転写中のDNAは内部で折れ曲げなければならない。しかし、転写が開始する前のDNAは比較的強固にまっすぐしている[37]。最初にDNAを入れるときは開いているが、途中からDNAが酵素から離れないように閉じるのだ。メタルAは、最近付加された2つのリボヌクレオチド間のリン酸に結合できる位置にある[36]。活性中心の近くには溝にまたがったブリッジヘリックス bridge helix が観察される。まっすぐに伸びた状態では基質のリボヌクレオチド三リン酸が入れるようポア1は開いている。一方で、Thr831とAla832の付近で曲がる状態もあり、活性中心は閉ざされる[36]

内部のDNAは入口の所でその先にある壁のために無理やり曲げられる。酵素表面でほどかれた鋳型鎖はRNAと二重らせん形成するが、この長さはラダー rudder (舵)と呼ばれるタンパク質が障害物となり9bpに制限される[37]。それ以上付加されると、塩基対形成している最後のリボヌクレオチドがDNAから離れ、RNAの出口から抜け出す。DNAも別の出口で脱出し、鋳型鎖と非鋳型鎖は二重らせんに戻る。RNAポリメラーゼの進路、DNAの下流を前とするなら、後ろの壁から上にRNA・DNA出口が、下にポア1が開いている[37]

関連項目[編集]

注釈[編集]

  1. ^ a b c d タンパク質は様々な立体構造をとっているが、本来はアミノ酸が鎖のようにつながった直鎖状高分子である。この直鎖の末端は残基アミノ基酢酸かでそれぞれN末端、C末端と区別する。RNAポリメラーゼおよびDNAポリメラーゼの酵素活性、すなわち転写とDNA複製はN末端からC末端へと進む。したがって、タンパク質のアミノ酸構成を示すとき、N末端を左に順番にアミノ酸を書き並べる。この中の特定のアミノ酸の位置および区間はN末端から数えた番号で示す。
  2. ^ a b c d 転写は開始、伸長、終了の3段階からなる。開始段階では、RNAポリメラーゼがホロ酵素を形成してDNAのプロモーターに結合する。初め、DNAは二重らせんを形成したままで、このときのホロ酵素を閉鎖型複合体と呼ぶ。その後、二重らせんはほどかれ、開放型複合体になる。アボーティブ転写産物と呼ぶ数ヌクレオチドのRNAが合成される。伸長段階に入って遺伝子が本格的に転写される。
  3. ^ a b 転写の開始段階において、DNAポリメラーゼがRNA合成をできるようにするべく本来二重らせんであるDNAを一本に巻き戻す。まず、DNAポリメラーゼは二重らせんDNAに結合してする。次に巻き戻しを行うが、このとき一本鎖DNAとホロ酵素とを開放型複合体と呼ぶ。
  4. ^ a b DNAは二重らせんを形成しているが、RNAポリメラーゼが転写を行うのはこのうち1本である。転写されるほうを鋳型鎖、されないほうを非鋳型鎖と呼ぶ。

出典[編集]

  1. ^ 『ウィーバー 分子生物学』、化学同人、著者:Robert F. Weaver、監訳者:杉山弘、2008、p136
  2. ^ 『ウィーバー 分子生物学』、p137
  3. ^ a b 『ウィーバー 分子生物学』、p154
  4. ^ 『ウィーバー 分子生物学』、p155
  5. ^ a b 『ウィーバー 分子生物学』、p156
  6. ^ 『ワトソン 遺伝子の分子生物学第6版』、p385
  7. ^ a b 『ウィーバー 生化学』、p162
  8. ^ a b 『ウィーバー 生化学』、p161
  9. ^ a b c 『ウィーバー 分子生物学』、p153
  10. ^ 『ストライヤー生化学(第6版)』、東京化学同人、著者:Lubert Stryerほか、監訳者:入村達郎ほか、2008、p811
  11. ^ a b c d 『遺伝子第8版』、著者:Benjamin Lewin、訳者:菊池菊池韶彦(あきひこ)、東京化学同人、2006、p228
  12. ^ 『遺伝子第8版』、p338
  13. ^ a b 『遺伝子第8版』、p229
  14. ^ a b 『ウィーバー 分子生物学第4版』、p143
  15. ^ 『ウィーバー 分子生物学第4版』、p146
  16. ^ a b 『ウィーバー 分子生物学第4版』、p149
  17. ^ 『ウィーバー 分子生物学第4版』、p150
  18. ^ a b 『ウィーバー 分子生物学第4版』、p151
  19. ^ a b 『ワトソン 遺伝子の分子生物学第6版』、p389
  20. ^ a b 『ウィーバー 生化学第4版』、p163
  21. ^ a b 『ワトソン 遺伝子の分子生物学第6版』、p386
  22. ^ 『エッセンシャル遺伝子』、著者:Benjamin Lewin、訳者:菊池韶彦、発行:東京化学同人(2007)、p175
  23. ^ 『遺伝子第8版』、p225
  24. ^ 『ウィーバー 分子生物学第4版』、p165
  25. ^ a b c 『ウィーバー 分子生物学第4版』、p166
  26. ^ a b c d 『ウィーバー 分子生物学第4版』、p167
  27. ^ a b 『ウィーバー 分子生物学第4版』、p170
  28. ^ a b 『ワトソン 遺伝子の分子生物学第6版』、p387
  29. ^ 『ウィーバー 分子生物学第4版』、p273
  30. ^ 『ワトソン 遺伝子の分子生物学第6版』、p397
  31. ^ a b c 『ウィーバー 分子生物学第4版』、p275
  32. ^ the Annual Review of Genetics, Volume 34, 2000 by Annual Reviews
  33. ^ 『ウィーバー 分子生物学第4版』、p280
  34. ^ a b 『ウィーバー 分子生物学第4版』、p281
  35. ^ a b 『ウィーバー 分子生物学第4版』、p282
  36. ^ a b c 『ウィーバー 分子生物学第4版』、p283
  37. ^ a b c 『エッセンシャル遺伝子』、p176